Package: weakARMA 1.0.3

Julien Yves Rolland

weakARMA: Tools for the Analysis of Weak ARMA Models

Numerous time series admit autoregressive moving average (ARMA) representations, in which the errors are uncorrelated but not necessarily independent. These models are called weak ARMA by opposition to the standard ARMA models, also called strong ARMA models, in which the error terms are supposed to be independent and identically distributed (iid). This package allows the study of nonlinear time series models through weak ARMA representations. It determines identification, estimation and validation for ARMA models and for AR and MA models in particular. Functions can also be used in the strong case. This package also works on white noises by omitting arguments 'p', 'q', 'ar' and 'ma'. See Francq, C. and Zakoïan, J. (1998) <doi:10.1016/S0378-3758(97)00139-0> and Boubacar Maïnassara, Y. and Saussereau, B. (2018) <doi:10.1080/01621459.2017.1380030> for more details.

Authors:Yacouba Boubacar Maïnassara [aut], Julien Yves Rolland [aut, cre], Coraline Parguey [ctb], Vincent Mouillot [ctb]

weakARMA_1.0.3.tar.gz
weakARMA_1.0.3.tar.gz(r-4.5-noble)weakARMA_1.0.3.tar.gz(r-4.4-noble)
weakARMA_1.0.3.tgz(r-4.4-emscripten)weakARMA_1.0.3.tgz(r-4.3-emscripten)
weakARMA.pdf |weakARMA.html
weakARMA/json (API)

# Install 'weakARMA' in R:
install.packages('weakARMA', repos = 'https://cloud.r-project.org')
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 202 downloads 17 exports 11 dependencies

Last updated 3 years agofrom:174ecc3645. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKApr 02 2025
R-4.5-linuxOKApr 02 2025
R-4.4-linuxOKApr 02 2025

Exports:acf.gamma_macf.univARMA.selecestimationgradientmatXimeansqnl.acfomegaportmanteauTestsignifparamsim.ARMAsimGARCHVARestwnPTwnPT_SQwnRT

Dependencies:CompQuadFormlatticelmtestMASSmatrixStatsnlmesandwichstrucchangeurcavarszoo

Citation

To cite package ‘weakARMA’ in publications use:

Boubacar Maïnassara Y, Rolland J (2022). weakARMA: Tools for the Analysis of Weak ARMA Models. R package version 1.0.3, https://CRAN.R-project.org/package=weakARMA.

Corresponding BibTeX entry:

  @Manual{,
    title = {weakARMA: Tools for the Analysis of Weak ARMA Models},
    author = {Yacouba {Boubacar Maïnassara} and Julien Yves Rolland},
    year = {2022},
    note = {R package version 1.0.3},
    url = {https://CRAN.R-project.org/package=weakARMA},
  }

Readme and manuals

weakARMA

The goal of weakARMA is to allows the study of nonlinear time series models through weak ARMA representations.

Installation (Gitlab)

Current released

You can install the released version of weakARMA from PLMlab with:

install.packages("remotes")
remotes::install_gitlab("jrolland/weakARMA", host="https://plmlab.math.cnrs.fr")
Development version

You can install the currently developed version of weakARMA from PLMlab with:

install.packages("remotes")
remotes::install_git("https://plmlab.math.cnrs.fr/jrolland/weakARMA.git", ref="develop")

Installation (CRAN)

CRAN package is available. You can install the released version of weakARMA from CRAN with:

install.packages("weakARMA")

Example

This is a basic example which shows you how to solve a common problem:

library(weakARMA)
## basic example code

Help Manual

Help pageTopics
Computation of autocovariance and autocorrelation for an ARMA residuals.acf.gamma_m
Computation of autocovariance and autocorrelation for an ARMA residuals.acf.univ
Selection of ARMA modelsARMA.selec
Paris stock exchangeCAC40
Paris stock exchange returnCAC40return
Paris stock exchange square returnCAC40return.sq
Parameters estimation of a time series.estimation
Computation the gradient of the residuals of an ARMA modelgradient
Estimation of Fisher information matrix ImatXi
Function optim will minimizemeansq
Autocorrelogramnl.acf
Computation of Fisher information matriceomega
Portmanteau testsportmanteauTest
Portmanteau tests for one lag.portmanteauTest.h
Computes the parameters significancesignifparam
Simulation of ARMA(p,q) model.sim.ARMA
GARCH processsimGARCH
Estimation of VAR(p) modelVARest
Weak white noisewnPT
Weak white noisewnPT_SQ
Weak white noisewnRT