Package: RCAL 2.0

Zhiqiang Tan

RCAL: Regularized Calibrated Estimation

Regularized calibrated estimation for causal inference and missing-data problems with high-dimensional data, based on Tan (2020a) <doi:10.1093/biomet/asz059>, Tan (2020b) <doi:10.1214/19-AOS1824> and Sun and Tan (2020) <arxiv:2009.09286>.

Authors:Zhiqiang Tan, Baoluo Sun

RCAL_2.0.tar.gz
RCAL_2.0.tar.gz(r-4.5-noble)RCAL_2.0.tar.gz(r-4.4-noble)
RCAL_2.0.tgz(r-4.4-emscripten)RCAL_2.0.tgz(r-4.3-emscripten)
RCAL.pdf |RCAL.html
RCAL/json (API)

# Install 'RCAL' in R:
install.packages('RCAL', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.49 score 1 packages 17 scripts 210 downloads 3 mentions 18 exports 1 dependencies

Last updated 4 years agofrom:0db1da66d8. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-linuxOKOct 25 2024

Exports:ate.aipwate.ipwate.nregate.regu.cvate.regu.pathglm.nregglm.reguglm.regu.cvglm.regu.pathlate.aipwlate.nreglate.regu.cvlate.regu.pathmn.aipwmn.ipwmn.nregmn.regu.cvmn.regu.path

Dependencies:trust

A Vignette for ATE Estimation

Rendered fromRCAL-ATE-vig.Rnwusingutils::Sweaveon Oct 25 2024.

Last update: 2020-11-05
Started: 2020-11-05

A Vignette for LATE Estimation

Rendered fromRCAL-LATE-vig.Rnwusingutils::Sweaveon Oct 25 2024.

Last update: 2020-11-05
Started: 2020-11-05

Readme and manuals

Help Manual

Help pageTopics
RCAL: Regularized calibrated estimationRCAL-package RCAL
Augmented inverse probability weighted estimation of population meansate.aipw
Inverse probability weighted estimation of average treatment effectsate.ipw
Model-assisted inference for average treatment effects without regularizationate.nreg
Model-assisted inference for average treatment effects based on cross validationate.regu.cv
Model-assisted inference for average treatment effects along regularization pathsate.regu.path
Non-regularied M-estimation for fitting generalized linear modelsglm.nreg
Regularied M-estimation for fitting generalized linear models with a fixed tuning parameterglm.regu
Regularied M-estimation for fitting generalized linear models based on cross validationglm.regu.cv
Regularied M-estimation for fitting generalized linear models along a regularization pathglm.regu.path
Augmented inverse probability weighted estimation of local average treatment effectslate.aipw
Model-assisted inference for local average treatment effects without regularizationlate.nreg
Model-assisted inference for local average treatment effects (LATEs) with instrumental variables based on cross validationlate.regu.cv
Model-assisted inference for local average treatment effects along regularization pathslate.regu.path
Augmented inverse probability weighted estimation of population meansmn.aipw
Inverse probability weighted estimation of population meansmn.ipw
Model-assisted inference for population means without regularizationmn.nreg
Model-assisted inference for population means based on cross validationmn.regu.cv
Model-assisted inference for population means along a regularization pathmn.regu.path
Simulated datasimu.data
Simulated instrumental variable datasimu.iv.data