Package: countts 0.1.0
Tanujit Chakraborty
countts: Thomson Sampling for Zero-Inflated Count Outcomes
A specialized tool is designed for assessing contextual bandit algorithms, particularly those aimed at handling overdispersed and zero-inflated count data. It offers a simulated testing environment that includes various models like Poisson, Overdispersed Poisson, Zero-inflated Poisson, and Zero-inflated Overdispersed Poisson. The package is capable of executing five specific algorithms: Linear Thompson sampling with log transformation on the outcome, Thompson sampling Poisson, Thompson sampling Negative Binomial, Thompson sampling Zero-inflated Poisson, and Thompson sampling Zero-inflated Negative Binomial. Additionally, it can generate regret plots to evaluate the performance of contextual bandit algorithms. This package is based on the algorithms by Liu et al. (2023) <arxiv:2311.14359>.
Authors:
countts_0.1.0.tar.gz
countts_0.1.0.tar.gz(r-4.5-noble)countts_0.1.0.tar.gz(r-4.4-noble)
countts_0.1.0.tgz(r-4.4-emscripten)countts_0.1.0.tgz(r-4.3-emscripten)
countts.pdf |countts.html✨
countts/json (API)
# Install 'countts' in R: |
install.packages('countts', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:4edec682fc. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-linux | OK | Oct 25 2024 |
Exports:apply_laplacePoissonapply_linearTSapply_normalNBapply_ZINBapply_ZIPoutput_summaryupdate_algorithm
Dependencies:clicolorspacedata.tablefansifarverfastDummiesggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalesstringistringrtibbleutf8vctrsviridisLitewithr