Package: npsf 0.8.0

Oleg Badunenko

npsf: Nonparametric and Stochastic Efficiency and Productivity Analysis

Nonparametric efficiency measurement and statistical inference via DEA type estimators (see Färe, Grosskopf, and Lovell (1994) <doi:10.1017/CBO9780511551710>, Kneip, Simar, and Wilson (2008) <doi:10.1017/S0266466608080651> and Badunenko and Mozharovskyi (2020) <doi:10.1080/01605682.2019.1599778>) as well as Stochastic Frontier estimators for both cross-sectional data and 1st, 2nd, and 4th generation models for panel data (see Kumbhakar and Lovell (2003) <doi:10.1017/CBO9781139174411>, Badunenko and Kumbhakar (2016) <doi:10.1016/j.ejor.2016.04.049>). The stochastic frontier estimators can handle both half-normal and truncated normal models with conditional mean and heteroskedasticity. The marginal effects of determinants can be obtained.

Authors:Oleg Badunenko [aut, cre], Pavlo Mozharovskyi [aut], Yaryna Kolomiytseva [aut]

npsf_0.8.0.tar.gz
npsf_0.8.0.tar.gz(r-4.5-noble)npsf_0.8.0.tar.gz(r-4.4-noble)
npsf_0.8.0.tgz(r-4.4-emscripten)npsf_0.8.0.tgz(r-4.3-emscripten)
npsf.pdf |npsf.html
npsf/json (API)

# Install 'npsf' in R:
install.packages('npsf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • banks00_07 - U.S. Commercial Banks Data
  • banks05 - U.S. Commercial Banks Data
  • ccr81 - Program Follow Through at Primary Schools
  • mroz - Female labor force participation
  • pwt56 - Penn World Tables 5.6
  • usmanuf - US Manufacturing Industry Data

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.11 score 13 scripts 321 downloads 11 exports 2 dependencies

Last updated 4 years agofrom:87861539a7. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 12 2024
R-4.5-linux-x86_64OKOct 12 2024

Exports:haltonnptestindnptestrtsprimesrescalesftenonradialtenonradialbcteradialteradialbctruncreg

Dependencies:FormulaRcpp