Package: varycoef 0.3.5

Jakob A. Dambon

varycoef: Modeling Spatially Varying Coefficients

Implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) <doi:10.1016/j.spasta.2020.100470>). Covariance tapering (Furrer et al. (2006) <doi:10.1198/106186006X132178>) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) <doi:10.1080/13658816.2022.2097684>). The package and its capabilities are described in (Dambon et al. (2021c) <doi:10.48550/arXiv.2106.02364>).

Authors:Jakob A. Dambon [aut, cre], Fabio Sigrist [ctb], Reinhard Furrer [ctb]

varycoef_0.3.5.tar.gz
varycoef_0.3.5.tar.gz(r-4.5-noble)varycoef_0.3.5.tar.gz(r-4.4-noble)
varycoef_0.3.5.tgz(r-4.4-emscripten)varycoef_0.3.5.tgz(r-4.3-emscripten)
varycoef.pdf |varycoef.html
varycoef/json (API)

# Install 'varycoef' in R:
install.packages('varycoef', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/jakobdambon/varycoef/issues

Datasets:
  • SVCdata - Sampled SVC Data
  • house - Lucas County House Price Data

On CRAN:

Conda:

2.00 score 104 downloads 10 exports 54 dependencies

Last updated 7 days agofrom:6c6ca13ab4. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 26 2025
R-4.5-linuxOKMar 26 2025
R-4.4-linuxOKMar 26 2025

Exports:check_cov_lowercov_parGLS_cholinit_bounds_optimnlocssample_SVCdataSVC_mleSVC_mle_controlSVC_selectionSVC_selection_control

Dependencies:backportsBBmisccheckmateclicodetoolscolorspacedata.tabledotCall64fansifarverfastmatchforeachggplot2glmnetgluegtableisobanditeratorslabelinglatticelhslifecyclemagrittrMASSMatrixmgcvmlrmlrMBOmunsellnlmeoptimParallelparallelMapParamHelperspbapplypillarpkgconfigR6RColorBrewerRcppRcppArmadilloRcppEigenrlangscalesshapesmoofspamstringisurvivaltibbleutf8vctrsviridisLitewithrXML

varycoef: An R Package to Model Spatially Varying Coefficients

Rendered fromIntroduction.Rmdusingknitr::rmarkdownon Mar 26 2025.

Last update: 2022-09-17
Started: 2022-09-17

Readme and manuals

Help Manual

Help pageTopics
Check Lower Bound of Covariance Parameterscheck_cov_lower
Extact Mean Effectscoef.SVC_mle coef.SVC_selection
Extact Covariance Parameterscov_par cov_par.SVC_mle cov_par.SVC_selection
Extact Model Fitted Valuesfitted.SVC_mle
GLS Estimate using Cholesky FactorGLS_chol GLS_chol.matrix GLS_chol.spam.chol.NgPeyton
Lucas County House Price Datahouse
Conditional Akaike's and Bayesian Information CriteriaAIC.SVC_mle BIC.SVC_mle IC.SVC_mle
Setting of Optimization Bounds and Initial Valuesinit_bounds_optim
Extact the LikelihoodlogLik.SVC_mle
Extract Number of Unique Locationsnlocs
Extract Number of Observationsnobs.SVC_mle
Plotting Residuals of 'SVC_mle' modelplot.SVC_mle
Prediction of SVCs (and response variable)predict.SVC_mle
Printing Method for 'summary.SVC_mle'print.summary.SVC_mle
Print Method for 'SVC_mle'print.SVC_mle
Extact Model Residualsresiduals.SVC_mle
Sample Function for GP-based SVC Model for Given Locationssample_SVCdata
Summary Method for 'SVC_mle'summary.SVC_mle
MLE of SVC modelSVC_mle SVC_mle.default SVC_mle.formula
Set Parameters for 'SVC_mle'SVC_mle_control SVC_mle_control.default SVC_mle_control.SVC_mle
SVC Model SelectionSVC_selection
SVC Selection ParametersSVC_selection_control
Sampled SVC DataSVCdata
varycoef: Modeling Spatially Varying Coefficientsvarycoef-package varycoef