Package: LINselect 1.1.5

Benjamin Auder

LINselect: Selection of Linear Estimators

Estimate the mean of a Gaussian vector, by choosing among a large collection of estimators, following the method developed by Y. Baraud, C. Giraud and S. Huet (2014) <doi:10.1214/13-AIHP539>. In particular it solves the problem of variable selection by choosing the best predictor among predictors emanating from different methods as lasso, elastic-net, adaptive lasso, pls, randomForest. Moreover, it can be applied for choosing the tuning parameter in a Gauss-lasso procedure.

Authors:Yannick Baraud, Christophe Giraud, Sylvie Huet

LINselect_1.1.5.tar.gz
LINselect_1.1.5.tar.gz(r-4.5-noble)LINselect_1.1.5.tar.gz(r-4.4-noble)
LINselect_1.1.5.tgz(r-4.4-emscripten)LINselect_1.1.5.tgz(r-4.3-emscripten)
LINselect.pdf |LINselect.html
LINselect/json (API)

# Install 'LINselect' in R:
install.packages('LINselect', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 1 packages 2 scripts 274 downloads 1 mentions 4 exports 7 dependencies

Last updated 12 months agofrom:6d46db803b. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-linuxNOTENov 02 2024

Exports:penaltysimulDatatuneLassoVARselect

Dependencies:elasticnetgtoolslarsMASSmvtnormplsrandomForest

Readme and manuals

Help Manual

Help pageTopics
penaltypenalty
simulDatasimulData
tuneLassotuneLasso
VARselectVARselect