Package: opGMMassessment 0.4

Jorn Lotsch
opGMMassessment: Optimized Automated Gaussian Mixture Assessment
Necessary functions for optimized automated evaluation of the number and parameters of Gaussian mixtures in one-dimensional data. Various methods are available for parameter estimation and for determining the number of modes in the mixture. A detailed description of the methods ca ben found in Lotsch, J., Malkusch, S. and A. Ultsch. (2022) <doi:10.1016/j.imu.2022.101113>.
Authors:
opGMMassessment_0.4.tar.gz
opGMMassessment_0.4.tar.gz(r-4.5-noble)opGMMassessment_0.4.tar.gz(r-4.4-noble)
opGMMassessment_0.4.tgz(r-4.4-emscripten)opGMMassessment_0.4.tgz(r-4.3-emscripten)
opGMMassessment.pdf |opGMMassessment.html✨
opGMMassessment/json (API)
# Install 'opGMMassessment' in R: |
install.packages('opGMMassessment', repos = 'https://cloud.r-project.org') |
- Chromatogram - Example data of lysophosphatidic acids, LPA.
- Mixture3 - Example Gaussian mixture data.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:902173ad22. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 27 2025 |
R-4.5-linux | OK | Mar 27 2025 |
R-4.4-linux | OK | Mar 27 2025 |
Exports:GMMplotGGopGMMassessment
Dependencies:AdaptGaussaskpassbase64encbitopsbootbslibcachemcaToolscliclusterClusterRcodacodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDataVisualizationsdigestdiptestDistributionOptimizationdoParalleldplyrevaluatefansifarverfastGHQuadfastmapFNNfontawesomeforeachfsGAgenericsggplot2gluegmpgtablehighrhtmltoolshtmlwidgetshttpuvhttrisobanditeratorsjquerylibjsonlitekernlabKernSmoothknitrkslabelinglaterlatticelazyevallifecyclelme4magrittrMASSMatrixmclustmemoisemgcvmimeminqamixAKmixtoolsmnormtmulticoolmultimodemunsellmvtnormNbClustnlmenloptropensslpillarpkgconfigplotlyplyrpracmapromisespurrrR6rappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreformulasreshape2rlangrmarkdownrootSolvesassscalessegmentedshinysourcetoolsspstringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxtableyaml
Citation
Jörn Lötsch, Sebastian Malkusch, Alfred Ultsch. Comparative assessment of automated algorithms for the separation of one-dimensional Gaussian mixtures. Informatics in Medicine Unlocked, Volume 34, 2022 https://doi.org/10.1016/j.imu.2022.101113 https://www.sciencedirect.com/science/article/pi/S2352914822002507)
Corresponding BibTeX entry:
@Article{, title = {Comparative assessment of automated algorithms for the separation of one-dimensional Gaussian mixtures}, journal = {Informatics in Medicine Unlocked}, volume = {34}, pages = {101113}, year = {2022}, issn = {2352-9148}, doi = {10.1016/j.imu.2022.101113}, url = {https://www.sciencedirect.com/science/article/pii/S2352914822002507}, author = {Jörn Lötsch and Sebastian Malkusch and Alfred Ultsch}, }
Readme and manuals
opGMMassessment
Help Manual
Help page | Topics |
---|---|
Example data of lysophosphatidic acids, LPA. | Chromatogram |
Plot of Gaussian mixtures | GMMplotGG |
Example Gaussian mixture data. | Mixture3 |
Gaussian mixture assessment | opGMMassessment |