Package: GSM 1.3.2
Sergio Venturini
GSM: Gamma Shape Mixture
Implementation of a Bayesian approach for estimating a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter.
Authors:
GSM_1.3.2.tar.gz
GSM_1.3.2.tar.gz(r-4.5-noble)GSM_1.3.2.tar.gz(r-4.4-noble)
GSM_1.3.2.tgz(r-4.4-emscripten)GSM_1.3.2.tgz(r-4.3-emscripten)
GSM.pdf |GSM.html✨
GSM/json (API)
# Install 'GSM' in R: |
install.packages('GSM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 9 years agofrom:053a0b3600. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
Exports:allcurves.qdgsmestim.gsmestim.gsm_thetapgsmplotpredictqgsmrgsmsummary
Dependencies:gtools
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Estimation of a Gamma Shape Mixture Model | GSM-package |
Utility Function | allcurves.q |
Estimation of a Gamma Shape Mixture Model (GSM) with collapsing | estim.gsm |
Estimation of a Gamma Shape Mixture Model (GSM) | estim.gsm_theta |
Class "gsm". Result of Gamma Shape Mxiture Estimation. | gsm-class initialize,gsm-method |
Utility Function | dgsm GSMDist pgsm qgsm rgsm |
Plot of a Gamma Shape Mixture Model | plot,ANY,ANY-method plot,gsm,missing-method plot-methods |
Tail Probability Estimation for a Gamma Shape Mixture Model | predict,ANY-method predict,gsm-method predict-methods |
Summarizing Gamma Shape Mixtures | summary,ANY-method summary,gsm-method summary-methods |