Package: rem 1.3.1

Laurence Brandenberger

rem: Relational Event Models (REM)

Calculate endogenous network effects in event sequences and fit relational event models (REM): Using network event sequences (where each tie between a sender and a target in a network is time-stamped), REMs can measure how networks form and evolve over time. Endogenous patterns such as popularity effects, inertia, similarities, cycles or triads can be calculated and analyzed over time.

Authors:Laurence Brandenberger

rem_1.3.1.tar.gz
rem_1.3.1.tar.gz(r-4.5-noble)rem_1.3.1.tar.gz(r-4.4-noble)
rem_1.3.1.tgz(r-4.4-emscripten)rem_1.3.1.tgz(r-4.3-emscripten)
rem.pdf |rem.html
rem/json (API)

# Install 'rem' in R:
install.packages('rem', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cpp

1.00 score 227 downloads 9 exports 5 dependencies

Last updated 6 years agofrom:278408b125. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 24 2025
R-4.5-linux-x86_64OKJan 24 2025

Exports:createRemDatasetdegreeStateventSequencefourCycleStatinertiaStatreciprocityStatsimilarityStattimeToEventtriadStat

Dependencies:codetoolsdoParallelforeachiteratorsRcpp

Readme and manuals

Help Manual

Help pageTopics
Fit Relational Event Models (REM)rem-package relational event model relational-event-model rem
Create REM data set with dynamic risk setscreateRemDataset
Calculate (in/out)-degree statisticsdegree degreeStat indegree outdegree
Create event sequenceevent sequence event.sequence eventSequence
Calculate four cycle statisticsfourCycle fourCycleStat
Calculate inertia statisticsinertia inertiaStat
Calculate reciprocity statisticsreciprocity reciprocityStat
Calculate similarity statisticssimilarity similarityStat
Calculate the time-to-next-event or the time-since-date for a REM data set.timeToEvent
Calculate triad statisticstriad triadStat