Package: fsemipar 1.1.1

Silvia Novo
fsemipar: Estimation, Variable Selection and Prediction for Functional Semiparametric Models
Routines for the estimation or simultaneous estimation and variable selection in several functional semiparametric models with scalar responses are provided. These models include the functional single-index model, the semi-functional partial linear model, and the semi-functional partial linear single-index model. Additionally, the package offers algorithms for handling scalar covariates with linear effects that originate from the discretization of a curve. This functionality is applicable in the context of the linear model, the multi-functional partial linear model, and the multi-functional partial linear single-index model.
Authors:
fsemipar_1.1.1.tar.gz
fsemipar_1.1.1.tar.gz(r-4.5-noble)fsemipar_1.1.1.tar.gz(r-4.4-noble)
fsemipar_1.1.1.tgz(r-4.4-emscripten)fsemipar_1.1.1.tgz(r-4.3-emscripten)
fsemipar.pdf |fsemipar.html✨
fsemipar/json (API)
# Install 'fsemipar' in R: |
install.packages('fsemipar', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 11 months agofrom:080e003a1e. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 31 2025 |
R-4.5-linux | OK | Mar 31 2025 |
R-4.4-linux | OK | Mar 31 2025 |
Exports:FASSMR.kernel.fitFASSMR.kNN.fitfsim.kernel.fitfsim.kernel.fit.optimfsim.kernel.testfsim.kNN.fitfsim.kNN.fit.optimfsim.kNN.testIASSMR.kernel.fitIASSMR.kNN.fitlm.pels.fitplot.FASSMR.kernelplot.FASSMR.kNNplot.fsim.kernelplot.fsim.kNNplot.IASSMR.kernelplot.IASSMR.kNNplot.lm.pelsplot.PVSplot.PVS.kernelplot.PVS.kNNplot.sfpl.kernelplot.sfpl.kNNplot.sfplsim.kernelplot.sfplsim.kNNpredict.FASSMR.kernelpredict.FASSMR.kNNpredict.fsim.kernelpredict.fsim.kNNpredict.IASSMR.kernelpredict.IASSMR.kNNpredict.lm.pelspredict.PVSpredict.PVS.kernelpredict.PVS.kNNpredict.sfpl.kernelpredict.sfpl.kNNpredict.sfplsim.kernelpredict.sfplsim.kNNprint.FASSMR.kernelprint.FASSMR.kNNprint.fsim.kernelprint.fsim.kNNprint.IASSMR.kernelprint.IASSMR.kNNprint.lm.pelsprint.PVSprint.PVS.kernelprint.PVS.kNNprint.sfpl.kernelprint.sfpl.kNNprint.sfplsim.kernelprint.sfplsim.kNNprojecPVS.fitPVS.kernel.fitPVS.kNN.fitsemimetric.projecsfpl.kernel.fitsfpl.kNN.fitsfplsim.kernel.fitsfplsim.kNN.fitsummary.FASSMR.kernelsummary.FASSMR.kNNsummary.fsim.kernelsummary.fsim.kNNsummary.IASSMR.kernelsummary.IASSMR.kNNsummary.lm.pelssummary.PVSsummary.PVS.kernelsummary.PVS.kNNsummary.sfpl.kernelsummary.sfpl.kNNsummary.sfplsim.kernelsummary.sfplsim.kNN
Dependencies:clicodetoolscolorspacecpp11DiceKrigingdoParalleldplyrfansifarverforeachgenericsggplot2gluegridExtragrpreggtablegtoolsisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmeparallellypillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr
Citation
To cite package ‘fsemipar’ in publications use:
Aneiros G, Novo S (2024). fsemipar: Estimation, Variable Selection and Prediction for Functional Semiparametric Models. R package version 1.1.1, https://CRAN.R-project.org/package=fsemipar.
Corresponding BibTeX entry:
@Manual{, title = {fsemipar: Estimation, Variable Selection and Prediction for Functional Semiparametric Models}, author = {German Aneiros and Silvia Novo}, year = {2024}, note = {R package version 1.1.1}, url = {https://CRAN.R-project.org/package=fsemipar}, }