
Package: fsemipar (via r-universe)
August 20, 2024

Type Package

Title Estimation, Variable Selection and Prediction for Functional
Semiparametric Models

Version 1.1.1

Date 2024-05-21

Author German Aneiros [aut], Silvia Novo [aut, cre]

Depends R (>= 3.5.0), grpreg

Imports DiceKriging, splines, gtools, stats, parallelly, doParallel,
parallel, foreach, ggplot2, gridExtra, tidyr

Maintainer Silvia Novo <snovo@est-econ.uc3m.es>

Description Routines for the estimation or simultaneous estimation and
variable selection in several functional semiparametric models
with scalar responses are provided. These models include the
functional single-index model, the semi-functional partial
linear model, and the semi-functional partial linear
single-index model. Additionally, the package offers algorithms
for handling scalar covariates with linear effects that
originate from the discretization of a curve. This
functionality is applicable in the context of the linear model,
the multi-functional partial linear model, and the
multi-functional partial linear single-index model.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2024-05-21 16:50:03 UTC

Contents
fsemipar-package . 2
FASSMR.kernel.fit . 4
FASSMR.kNN.fit . 9
fsemipar.internal . 14

1

2 fsemipar-package

fsim.kernel.fit . 15
fsim.kernel.fit.optim . 18
fsim.kernel.test . 21
fsim.kNN.fit . 24
fsim.kNN.fit.optim . 27
fsim.kNN.test . 30
IASSMR.kernel.fit . 33
IASSMR.kNN.fit . 39
lm.pels.fit . 45
plot.classes . 47
predict.fsim . 50
predict.IASSMR . 51
predict.lm . 54
predict.mfplm.PVS . 56
predict.sfpl . 58
predict.sfplsim.FASSMR . 60
print.summary.fsim . 63
print.summary.lm . 64
print.summary.mfpl . 65
print.summary.mfplsim . 66
print.summary.sfpl . 68
print.summary.sfplsim . 69
projec . 70
PVS.fit . 72
PVS.kernel.fit . 76
PVS.kNN.fit . 82
semimetric.projec . 87
sfpl.kernel.fit . 89
sfpl.kNN.fit . 93
sfplsim.kernel.fit . 96
sfplsim.kNN.fit . 101
Sugar . 106
Tecator . 107

Index 108

fsemipar-package Estimation, Variable Selection and Prediction for Functional Semi-
parametric Models

Description

This package is dedicated to the estimation and simultaneous estimation and variable selection
in several functional semiparametric models with scalar response. These include the functional
single-index model, the semi-functional partial linear model, and the semi-functional partial linear
single-index model. Additionally, it encompasses algorithms for addressing estimation and variable
selection in linear models and bi-functional partial linear models when the scalar covariates with
linear effects are derived from the discretisation of a curve. Furthermore, the package offers routines

fsemipar-package 3

for kernel- and kNN-based estimation using Nadaraya-Watson weights in models with a nonpara-
metric or semiparametric component. It also includes S3 methods (predict, plot, print, summary) to
facilitate statistical analysis across all the considered models and estimation procedures.

Details

The package can be divided into several thematic sections:

1. Estimation of the functional single-index model.

• projec.
• semimetric.projec.
• fsim.kernel.fit and fsim.kNN.fit.
• fsim.kernel.fit.optim and fsim.kNN.fit.optim

• fsim.kernel.test and fsim.kNN.test.
• predict, plot, summary and print methods for fsim.kernel and fsim.kNN classes.

2. Simultaneous estimation and variable selection in linear and semi-functional partial linear
models.

(a) Linear model
• lm.pels.fit.
• predict, summary, plot and print methods for lm.pels class.

(b) Semi-functional partial linear model.
• sfpl.kernel.fit and sfpl.kNN.fit.
• predict, summary, plot and print methods for sfpl.kernel and sfpl.kNN classes.

(c) Semi-functional partial linear single-index model.
• sfplsim.kernel.fit and sfplsim.kNN.fit.
• predict, summary, plot and print methods for sfplsim.kernel and sfplsim.kNN

classes.

3. Algorithms for impact point selection in models with covariates derived from the discretisation
of a curve.

(a) Linear model
• PVS.fit.
• predict, summary, plot and print methods for PVS class.

(b) Bi-functional partial linear model.
• PVS.kernel.fit and PVS.kNN.fit.
• predict, summary, plot and print methods for PVS.kernel and PVS.kNN classes.

(c) Bi-functional partial linear single-index model.
• FASSMR.kernel.fit and FASSMR.kNN.fit.
• IASSMR.kernel.fit and IASSMR.kNN.fit.
• predict, summary, plot and print methods for FASSMR.kernel, FASSMR.kNN, IASSMR.kernel

and IASSMR.kNN classes.

4. Two datasets: Tecator and Sugar.

4 FASSMR.kernel.fit

Author(s)

German Aneiros [aut], Silvia Novo [aut, cre]

Maintainer: Silvia Novo <snovo@est-econ.uc3m.es>

References

Aneiros, G. and Vieu, P., (2014) Variable selection in infinite-dimensional problems, Statistics and
Probability Letters, 94, 12–20. doi:10.1016/j.spl.2014.06.025.

Aneiros, G., Ferraty, F., and Vieu, P., (2015) Variable selection in partial linear regression with
functional covariate, Statistics, 49 1322–1347, doi:10.1080/02331888.2014.998675.

Aneiros, G., and Vieu, P., (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671. doi:10.1007/s0018001505688.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single-index regression, Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are
mixture of functional and high-dimensional variables, TEST, 30, 481–504, doi:10.1007/s11749020-
00728w.

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data
analysis, Statistics and Probability Letters, 171, 109028, doi:10.1016/j.spl.2020.109028.

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression, Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

FASSMR.kernel.fit Impact point selection with FASSMR and kernel estimation

Description

This function implements the Fast Algorithm for Sparse Semiparametric Multi-functional Regres-
sion (FASSMR) with kernel estimation. This algorithm is specifically designed for estimating
multi-functional partial linear single-index models, which incorporate multiple scalar variables and
a functional covariate as predictors. These scalar variables are derived from the discretisation of a
curve and have linear effect while the functional covariate exhibits a single-index effect.

FASSMR selects the impact points of the discretised curve and estimates the model. The algorithm
employs a penalised least-squares regularisation procedure, integrated with kernel estimation using
Nadaraya-Watson weights. It uses B-spline expansions to represent curves and eligible functional
indexes. Additionally, it utilises an objective criterion (criterion) to determine the initial number
of covariates in the reduced model (w.opt), the bandwidth (h.opt), and the penalisation parameter
(lambda.opt).

https://doi.org/10.1016/j.spl.2014.06.025
https://doi.org/10.1080/02331888.2014.998675
https://doi.org/10.1007/s00180-015-0568-8
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1016/j.spl.2020.109028
https://doi.org/10.1111/anzs.12355

FASSMR.kernel.fit 5

Usage

FASSMR.kernel.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10,
kind.of.kernel = "quad",range.grid = NULL, nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20), criterion = "GCV",
penalty = "grSCAD", max.iter = 1000, n.core = NULL)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

6 FASSMR.kernel.fit

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used when criterion="k-fold-CV").
Default is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

criterion The criterion used to select the tuning and regularisation parameters: wn.opt,
lambda.opt and h.opt (also vn.opt if needed). Options include "GCV", "BIC",
"AIC", or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

n.core Number of CPU cores designated for parallel execution. The default is n.core<-availableCores(omit=1).

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (⟨θ0, Xi⟩) + εi, (i = 1, . . . , n),

where:

• Yi is a real random response and Xi denotes a random element belonging to some separable
Hilbert space H with inner product denoted by ⟨·, ·⟩. The second functional predictor ζi is
assumed to be a curve defined on some interval [a, b] which is observed at the points a ≤ t1 <
· · · < tpn

≤ b.

• β0 = (β01, . . . , β0pn)
⊤ is a vector of unknown real coefficients and r(·) denotes a smooth

unknown link function. In addition, θ0 is an unknown functional direction in H.

• εi denotes the random error.

FASSMR.kernel.fit 7

In the MFPLSIM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLSIM is fitted using the FASSMR algorithm. The main idea of this al-
gorithm is to consider a reduced model, with only some (very few) linear covariates (but covering
the entire discretization interval of ζ), and discarding directly the other linear covariates (since it is
expected that they contain very similar information about the response).

To explain the algorithm, we assume, without loss of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers. This consideration allows us
to build a subset of the initial pn linear covariates, containging only wn equally spaced discretised
observations of ζ covering the entire interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number z.

We consider the following reduced model, which involves only the linear covariates belonging to
R1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 ,Xi

〉)
+ ε1i .

The program receives the eligible numbers of linear covariates for building the reduced model
through the argument wn. Then, the penalised least-squares variable selection procedure, with kernel
estimation, is applied to the reduced model. This is done using the function sfplsim.kernel.fit,
which requires the remaining arguments (for details, see the documentation of the function sfplsim.kernel.fit).
The estimates obtained are the outputs of the FASSMR algorithm. For further details on this algo-
rithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer number), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

The function supports parallel computation. To avoid it, we can set n.core=1.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
h.opt and vn.opt are used).

beta.red Estimate of β1
0 in the reduced model when the optimal tuning parameters w.opt,

lambda.opt, h.opt and vn.opt are used.

theta.est Coefficients of θ̂ in the B-spline basis (i.e. estimate of θ0 when the optimal
tuning parameters w.opt, lambda.opt, h.opt and vn.opt are used): a vector
of length(order.Bspline+nknot.theta).

8 FASSMR.kernel.fit

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth (when w.opt is considered).

w.opt Selected size for R1
n.

lambda.opt Selected value for the penalisation parameter (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, h.opt
and vn.opt.

vn.opt Selected value of vn (when w.opt is considered).

beta.w Estimate of β1
0 for each value of the sequence wn.

theta.w Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

IC.w Value of the criterion function for each value of the sequence wn.
indexes.beta.nonnull.w

Indexes of the non-zero linear coefficients for each value of the sequence wn.

lambda.w Selected value of penalisation parameter for each value of the sequence wn.

h.w Selected bandwidth for each value of the sequence wn.

index01 Indexes of the covariates (in the entire set of pn) used to build R1
n for each value

of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kernel.fit, predict.FASSMR.kernel, plot.FASSMR.kernel and IASSMR.kernel.fit.

Alternative method FASSMR.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25

https://doi.org/10.1111/anzs.12355

FASSMR.kNN.fit 9

index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit <- FASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

nknot.theta=2, lambda.min.l=0.03,
max.q.h=0.35, nknot=20,criterion="BIC",
max.iter=5000)

proc.time()-ptm

FASSMR.kNN.fit Impact point selection with FASSMR and kNN estimation

Description

This function implements the Fast Algorithm for Sparse Semiparametric Multi-functional Regres-
sion (FASSMR) with kNN estimation. This algorithm is specifically designed for estimating multi-
functional partial linear single-index models, which incorporate multiple scalar variables and a
functional covariate as predictors. These scalar variables are derived from the discretisation of a
curve and have linear effect while the functional covariate exhibits a single-index effect.

FASSMR selects the impact points of the discretised curve and estimates the model. The algorithm
employs a penalised least-squares regularisation procedure, integrated with kNN estimation using
Nadaraya-Watson weights. It uses B-spline expansions to represent curves and eligible functional
indexes. Additionally, it utilises an objective criterion (criterion) to determine the initial number
of covariates in the reduced model (w.opt), the number of neighbours (k.opt), and the penalisation
parameter (lambda.opt).

Usage

FASSMR.kNN.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, knearest = NULL, min.knn = 2, max.knn = NULL, step = NULL,
kind.of.kernel = "quad",range.grid = NULL, nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20), criterion = "GCV",
penalty = "grSCAD", max.iter = 1000, n.core = NULL)

10 FASSMR.kNN.fit

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

FASSMR.kNN.fit 11

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used when criterion="k-fold-CV").
Default is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

criterion The criterion used to select the tuning and regularisation parameters: wn.opt,
k.opt and lambda.opt (also vn.opt if needed). Options include "GCV", "BIC",
"AIC", or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

n.core Number of CPU cores designated for parallel execution. The default is n.core<-availableCores(omit=1).

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (⟨θ0, Xi⟩) + εi, (i = 1, . . . , n),

where:

• Yi is a real random response and Xi denotes a random element belonging to some separable
Hilbert space H with inner product denoted by ⟨·, ·⟩. The second functional predictor ζi is
assumed to be a curve defined on some interval [a, b] which is observed at the points a ≤ t1 <
· · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn
)⊤ is a vector of unknown real coefficients and r(·) denotes a smooth

unknown link function. In addition, θ0 is an unknown functional direction in H.

• εi denotes the random error.

In the MFPLSIM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn
)} form

part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLSIM is fitted using the FASSMR algorithm. The main idea of this al-
gorithm is to consider a reduced model, with only some (very few) linear covariates (but covering

12 FASSMR.kNN.fit

the entire discretization interval of ζ), and discarding directly the other linear covariates (since it is
expected that they contain very similar information about the response).

To explain the algorithm, we assume, without loss of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers. This consideration allows us
to build a subset of the initial pn linear covariates, containging only wn equally spaced discretised
observations of ζ covering the entire interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number z.

We consider the following reduced model, which involves only the linear covariates belonging to
R1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 ,Xi

〉)
+ ε1i .

The program receives the eligible numbers of linear covariates for building the reduced model
through the argument wn. Then, the penalised least-squares variable selection procedure, with kNN
estimation, is applied to the reduced model. This is done using the function sfplsim.kNN.fit,
which requires the remaining arguments (for details, see the documentation of the function sfplsim.kNN.fit).
The estimates obtained are the outputs of the FASSMR algorithm. For further details on this algo-
rithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer number), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

The function supports parallel computation. To avoid it, we can set n.core=1.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
k.opt and vn.opt are used).

beta.red Estimate of β1
0 in the reduced model when the optimal tuning parameters w.opt,

lambda.opt, k.opt and vn.opt are used.

theta.est Coefficients of θ̂ in the B-spline basis (i.e. estimate of θ0 when the optimal
tuning parameters w.opt, lambda.opt, k.opt and vn.opt are used): a vector
of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours (when w.opt is considered).

w.opt Selected size for R1
n.

FASSMR.kNN.fit 13

lambda.opt Selected value for the penalisation parameter (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, k.opt
and vn.opt.

vn.opt Selected value of vn (when w.opt is considered).

beta.w Estimate of β1
0 for each value of the sequence wn (i.e. for each number of co-

variates in the reduced model).

theta.w Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

IC.w Value of the criterion function for each value of the sequence wn.
indexes.beta.nonnull.w

Indexes of the non-zero linear coefficients for each value of the sequence wn.

lambda.w Selected value of penalisation parameter for each value of the sequence wn.

k.w Selected number of neighbours for each value of the sequence wn.

index01 Indexes of the covariates (in the entire set of pn) used to build R1
n for each value

of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kNN.fit, predict.FASSMR.kNN, plot.FASSMR.kNN and IASSMR.kNN.fit.

Alternative method FASSMR.kernel.fit

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

https://doi.org/10.1111/anzs.12355

14 fsemipar.internal

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
ptm=proc.time()
fit<- FASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

nknot.theta=2, lambda.min.l=0.03, max.knn=20,nknot=20,criterion="BIC",
max.iter=5000)

proc.time()-ptm

fit
names(fit)

fsemipar.internal Package fsemipar internal functions

Description

The package includes the following internal functions, based on the code by F. Ferraty, which is
available on his website at https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/
index.html.

Details

• approx.spline.deriv

• Bspline.ini

• fnp.kernel.fit

• fnp.kernel.fit.test

• fnp.kernel.test

• fnp.kNN.fit

• fnp.kNN.fit.test

• fnp.kNN.fit.test.loc

• fnp.kNN.GCV

• fnp.kNN.test

• fsim.kernel.fit.fixedtheta

• fsim.kNN.fit.fixedtheta

• fun.kernel

• fun.kernel.fixedtheta

• fun.kNN

https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html
https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html

fsim.kernel.fit 15

• fun.kNN.fixedtheta

• funopare.kNN

• H.fnp.kernel

• H.fnp.kNN

• H.fsim.kernel

• H.fsim.kNN

• interp.spline.deriv

• quad

• semimetric.deriv

• semimetric.interv

• semimetric.pca

• sfplsim.kernel.fit.fixedtheta

• sfplsim.kNN.fit.fixedtheta

• Splinemlf

• symsolve

fsim.kernel.fit Functional single-index model fit using kernel estimation and joint
LOOCV minimisation

Description

This function fits a functional single-index model (FSIM) between a functional covariate and a
scalar response. It employs kernel estimation with Nadaraya-Watson weights and uses B-spline
expansions to represent curves and eligible functional indexes.

The function also utilises the leave-one-out cross-validation (LOOCV) criterion to select the band-
width (h.opt) and the coefficients of the functional index in the spline basis (theta.est). It per-
forms a joint minimisation of the LOOCV objective function in both the bandwidth and the func-
tional index.

Usage

fsim.kernel.fit(x, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10,
kind.of.kernel = "quad", range.grid = NULL, nknot = NULL, n.core = NULL)

16 fsim.kernel.fit

Arguments

x Matrix containing the observations of the functional covariate (i.e. curves) col-
lected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

n.core Number of CPU cores designated for parallel execution.The default is n.core<-availableCores(omit=1).

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(⟨θ0, Xi⟩) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with an inner product ⟨·, ·⟩. The term ε denotes the random error, θ0 ∈ H is the unknown
functional index and r(·) denotes the unknown smooth link function.

The FSIM is fitted using the kernel estimator

r̂h,θ̂(x) =

n∑
i=1

wn,h,θ̂(x,Xi)Yi, ∀x ∈ H,

fsim.kernel.fit 17

with Nadaraya-Watson weights

wn,h,θ̂(x,Xi) =
K

(
h−1dθ̂ (Xi, x)

)∑n
i=1 K

(
h−1dθ̂ (Xi, x)

) ,
where

• the real positive number h is the bandwidth.
• K is a kernel function (see the argument kind.of.kernel).
• dθ̂(x1, x2) = |⟨θ̂, x1 − x2⟩| is the projection semi-metric, and θ̂ is an estimate of θ0.

The procedure requires the estimation of the function-parameter θ0. Therefore, we use B-spline
expansions to represent curves (dimension nknot+order.Bspline) and eligible functional indexes
(dimension nknot.theta+order.Bspline). Then, we build a set Θn of eligible functional in-
dexes by calibrating (to ensure the identifiability of the model) the set of initial coefficients given
in seed.coeff. The larger this set is, the greater the size of Θn. Since our approach requires
intensive computation, a trade-off between the size of Θn and the performance of the estima-
tor is necessary. For that, Ait-Saidi et al. (2008) suggested considering order.Bspline=3 and
seed.coeff=c(-1,0,1). For details on the construction of Θn, see Novo et al. (2019).

We obtain the estimated coefficients of θ0 in the spline basis (theta.est) and the selected band-
width (h.opt) by minimising the LOOCV criterion. This function performs a joint minimisation
in both parameters, the bandwidth and the functional index, and supports parallel computation. To
avoid parallel computation, we can set n.core=1.

Value

call The matched call.
fitted.values Estimated scalar response.
residuals Differences between y and the fitted.values.
theta.est Coefficients of θ̂ in the B-spline basis: a vector of length(order.Bspline+nknot.theta).
h.opt Selected bandwidth.
r.squared Coefficient of determination.
var.res Redidual variance.
df Residual degrees of freedom.
yhat.cv Predicted values for the scalar response using leave-one-out samples.
CV.opt Minimum value of the CV function, i.e. the value of CV for theta.est and

h.opt.
CV.values Vector containing CV values for each functional index in Θn and the value of h

that minimises the CV for such index (i.e. CV.values[j] contains the value of
the CV function corresponding to theta.seq.norm[j,] and the best value of
the h.seq for this functional index according to the CV criterion).

H Hat matrix.
m.opt Index of θ̂ in the set Θn.
theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis

of the jth functional index in Θn.
h.seq Sequence of eligible values for h.
...

18 fsim.kernel.fit.optim

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P. (2008) Cross-validated estimations in the single-
functional index model. Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kernel.test, predict.fsim.kernel, plot.fsim.kernel.

Alternative procedure fsim.kNN.fit.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

#FSIM fit.
ptm<-proc.time()
fit<-fsim.kernel.fit(y[1:160],x=X[1:160,],max.q.h=0.35, nknot=20,
range.grid=c(850,1050),nknot.theta=4)
proc.time()-ptm
fit
names(fit)

fsim.kernel.fit.optim Functional single-index model fit using kernel estimation and iterative
LOOCV minimisation

Description

This function fits a functional single-index model (FSIM) between a functional covariate and a
scalar response. It employs kernel estimation with Nadaraya-Watson weights and uses B-spline
expansions to represent curves and eligible functional indexes.

The function also utilises the leave-one-out cross-validation (LOOCV) criterion to select the band-
width (h.opt) and the coefficients of the functional index in the spline basis (theta.est). It per-
forms an iterative minimisation of the LOOCV objective function, starting from an initial set of
coefficients (gamma) for the functional index.

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

fsim.kernel.fit.optim 19

Usage

fsim.kernel.fit.optim(x, y, nknot.theta = 3, order.Bspline = 3, gamma = NULL,
min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10,
kind.of.kernel = "quad", range.grid = NULL, nknot = NULL, threshold = 0.005)

Arguments

x Matrix containing the observations of the functional covariate (i.e. curves) col-
lected by row.

y Vector containing the scalar response.

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

gamma Vector indicating the initial coefficients for the functional index used in the it-
erative procedure. By default, it is a vector of ones. The size of the vector is
determined by the sum nknot.theta+order.Bspline.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of regularly spaced interior knots for
the B-spline expansion of the functional covariate. The default value is (p -
order.Bspline - 1)%/%2.

threshold The convergence threshold for the LOOCV function (scaled by the variance of
the response). The default is 5e-3.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(⟨θ0, Xi⟩) + εi, i = 1, . . . , n,

20 fsim.kernel.fit.optim

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with an inner product ⟨·, ·⟩. The term ε denotes the random error, θ0 ∈ H is the unknown
functional index and r(·) denotes the unknown smooth link function.

The FSIM is fitted using the kernel estimator

r̂h,θ̂(x) =

n∑
i=1

wn,h,θ̂(x,Xi)Yi, ∀x ∈ H,

with Nadaraya-Watson weights

wn,h,θ̂(x,Xi) =
K

(
h−1dθ̂ (Xi, x)

)∑n
i=1 K

(
h−1dθ̂ (Xi, x)

) ,
where

• the real positive number h is the bandwidth.

• K is a kernel function (see the argument kind.of.kernel).

• dθ̂(x1, x2) = |⟨θ̂, x1 − x2⟩| is the projection semi-metric, and θ̂ is an estimate of θ0.

The procedure requires the estimation of the function-parameter θ0. Therefore, we use B-spline
expansions to represent curves (dimension nknot+order.Bspline) and eligible functional indexes
(dimension nknot.theta+order.Bspline). We obtain the estimated coefficients of θ0 in the spline
basis (theta.est) and the selected bandwidth (h.opt) by minimising the LOOCV criterion. This
function performs an iterative minimisation procedure, starting from an initial set of coefficients
(gamma) for the functional index. Given a functional index, the optimal bandwidth according to the
LOOCV criterion is selected. For a given bandwidth, the minimisation in the functional index is
performed using the R function optim. The procedure is iterated until convergence. For details, see
Ferraty et al. (2013).

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

theta.est Coefficients of θ̂ in the B-spline basis: a vector of length(order.Bspline+nknot.theta).

h.opt Selected bandwidth.

r.squared Coefficient of determination.

var.res Redidual variance.

df Residual degrees of freedom.

CV.opt Minimum value of the LOOCV function, i.e. the value of LOOCV for theta.est
and h.opt.

err Value of the LOOCV function divided by var(y) for each interaction.

H Hat matrix.

h.seq Sequence of eligible values for the bandwidth.

CV.hseq CV values for each h.

...

fsim.kernel.test 21

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ferraty, F., Goia, A., Salinelli, E., and Vieu, P. (2013) Functional projection pursuit regression. Test,
22, 293–320, doi:10.1007/s1174901203062.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also predict.fsim.kernel and plot.fsim.kernel.

Alternative procedures fsim.kNN.fit.optim, fsim.kernel.fit and fsim.kNN.fit.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

#FSIM fit.
ptm<-proc.time()
fit<-fsim.kernel.fit.optim(y[1:160],x=X[1:160,],max.q.h=0.35, nknot=20,
range.grid=c(850,1050),nknot.theta=4)
proc.time()-ptm
fit
names(fit)

fsim.kernel.test Functional single-index kernel predictor

Description

This function computes predictions for a functional single-index model (FSIM) with a scalar re-
sponse, which is estimated using the Nadaraya-Watson kernel estimator. It requires a functional
index (θ), a global bandwidth (h), and the new observations of the functional covariate (x.test) as
inputs.

Usage

fsim.kernel.test(x, y, x.test, y.test=NULL, theta, nknot.theta = 3,
order.Bspline = 3, h = 0.5, kind.of.kernel = "quad", range.grid = NULL,
nknot = NULL)

https://doi.org/10.1007/s11749-012-0306-2
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

22 fsim.kernel.test

Arguments

x Matrix containing the observations of the functional covariate in the training
sample, collected by row.

y Vector containing the scalar responses in the training sample.
x.test Matrix containing the observations of the functional covariate in the the testing

sample, collected by row.
y.test (optional) Vector or matrix containing the scalar responses in the testing sample.
theta Vector containing the coefficients of θ in a B-spline basis, such that length(theta)=order.Bspline+nknot.theta
nknot.theta Number of regularly spaced interior knots in the B-spline expansion of θ0. The

default is 3.
order.Bspline Order of the B-spline basis functions. This is the number of coefficients in each

piecewise polynomial segment. The default is 3
h The global bandwidth. The default if 0.5.
kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")

is available.
range.grid Vector of length 2 containing the endpoints of the grid at which the observations

of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Number of regularly spaced interior knots for the B-spline expansion of the
functional covariate. The default value is (p - order.Bspline - 1)%/%2.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(⟨θ0, Xi⟩) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with an inner product ⟨·, ·⟩. The term ε denotes the random error, θ0 ∈ H is the unknown
functional index and r(·) denotes the unknown smooth link function; n is the training sample size.

Given θ ∈ H, h > 0 and a testing sample {Xj , j = 1, . . . , ntest}, the predicted responses (see the
value y.estimated.test) can be computed using the kernel procedure using

r̂h,θ(Xj) =

n∑
i=1

wn,h,θ(Xj , Xi)Yi, j = 1, . . . , ntest,

with Nadaraya-Watson weights

wn,h,θ(Xj , Xi) =
K

(
h−1dθ (Xi, Xj)

)∑n
i=1 K (h−1dθ (Xi, Xj))

,

where

• K is a kernel function (see the argument kind.of.kernel).
• for x1, x2 ∈ H, dθ(x1, x2) = |⟨θ, x1 − x2⟩| is the projection semi-metric.

If the argument y.test is provided to the program (i. e. if(!is.null(y.test))), the function
calculates the mean squared error of prediction (see the value MSE.test). This is computed as
mean((y.test-y.estimated.test)^2).

fsim.kernel.test 23

Value
y.estimated.test

Predicted responses.

MSE.test Mean squared error between predicted and observed responses in the testing
sample.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kernel.fit, fsim.kernel.fit.optim and predict.fsim.kernel.

Alternative procedure fsim.kNN.test.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

train<-1:160
test<-161:215

#FSIM fit.
ptm<-proc.time()
fit<-fsim.kernel.fit(y=y[train],x=X[train,],max.q.h=0.35, nknot=20,

range.grid=c(850,1050),nknot.theta=4)
proc.time()-ptm
fit

#FSIM prediction
test<-fsim.kernel.test(y=y[train],x=X[train,],x.test=X[test,],y.test=y[test],

theta=fit$theta.est,h=fit$h.opt,nknot.theta=4,nknot=20,
range.grid=c(850,1050))

#MSEP
test$MSE.test

https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

24 fsim.kNN.fit

fsim.kNN.fit Functional single-index model fit using kNN estimation and joint
LOOCV minimisation

Description

This function fits a functional single-index model (FSIM) between a functional covariate and a
scalar response. It employs kNN estimation with Nadaraya-Watson weights and uses B-spline
expansions to represent curves and eligible functional indexes.

The function also utilises the leave-one-out cross-validation (LOOCV) criterion to select the number
of neighbours (k.opt) and the coefficients of the functional index in the spline basis (theta.est).
It performs a joint minimisation of the LOOCV objective function in both the number of neighbours
and the functional index.

Usage

fsim.kNN.fit(x, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3, nknot.theta = 3,
knearest = NULL, min.knn = 2, max.knn = NULL, step = NULL,
kind.of.kernel = "quad", range.grid = NULL, nknot = NULL, n.core = NULL)

Arguments

x Matrix containing the observations of the functional covariate (i.e. curves) col-
lected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

knearest Vector of positive integers that defines the sequence within which the opti-
mal number of nearest neighbours k.opt is selected. If knearest=NULL, then
knearest <- seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

fsim.kNN.fit 25

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

n.core Number of CPU cores designated for parallel execution.The default is n.core<-availableCores(omit=1).

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(⟨θ0, Xi⟩) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with an inner product ⟨·, ·⟩. The term ε denotes the random error, θ0 ∈ H is the unknown
functional index and r(·) denotes the unknown smooth link function.

The FSIM is fitted using the kNN estimator

r̂k,θ̂(x) =

n∑
i=1

wn,k,θ̂(x,Xi)Yi, ∀x ∈ H,

with Nadaraya-Watson weights

wn,k,θ̂(x,Xi) =
K

(
H−1

k,x,θ̂
dθ̂ (Xi, x)

)
∑n

i=1 K
(
H−1

k,x,θ̂
dθ̂ (Xi, x)

) ,
where

• the positive integer k is a smoothing factor, representing the number of nearest neighbours.

• K is a kernel function (see the argument kind.of.kernel).

• dθ̂(x1, x2) = |⟨θ̂, x1−x2⟩| is the projection semi-metric, computed using semimetric.projec

and θ̂ is an estimate of θ0.

• Hk,x,θ̂ = min{h ∈ R+ such that
∑n

i=1 1Bθ̂(x,h)
(Xi) = k}, where 1Bθ̂(x,h)

(·) is the indica-
tor function of the open ball defined by the projection semi-metric, with centre x ∈ H and
radius h.

The procedure requires the estimation of the function-parameter θ0. Therefore, we use B-spline
expansions to represent curves (dimension nknot+order.Bspline) and eligible functional indexes
(dimension nknot.theta+order.Bspline). Then, we build a set Θn of eligible functional in-
dexes by calibrating (to ensure the identifiability of the model) the set of initial coefficients given
in seed.coeff. The larger this set is, the greater the size of Θn. Since our approach requires
intensive computation, a trade-off between the size of Θn and the performance of the estima-
tor is necessary. For that, Ait-Saidi et al. (2008) suggested considering order.Bspline=3 and
seed.coeff=c(-1,0,1). For details on the construction of Θn, see Novo et al. (2019).

26 fsim.kNN.fit

We obtain the estimated coefficients of θ0 in the spline basis (theta.est) and the selected number
of neighbours (k.opt) by minimising the LOOCV criterion. This function performs a joint minimi-
sation in both parameters, the number of neighbours and the functional index, and supports parallel
computation. To avoid parallel computation, we can set n.core=1.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

theta.est Coefficients of θ̂ in the B-spline basis: a vector of length(order.Bspline+nknot.theta).

k.opt Selected number of nearest neighbours.

r.squared Coefficient of determination.

var.res Redidual variance.

df Residual degrees of freedom.

yhat.cv Predicted values for the scalar response using leave-one-out samples.

CV.opt Minimum value of the CV function, i.e. the value of CV for theta.est and
k.opt.

CV.values Vector containing CV values for each functional index in Θn and the value of k
that minimises the CV for such index (i.e. CV.values[j] contains the value of
the CV function corresponding to theta.seq.norm[j,] and the best value of
the k.seq for this functional index according to the CV criterion).

H Hat matrix.

m.opt Index of θ̂ in the set Θn.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

k.seq Sequence of eligible values for k.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P. (2008) Cross-validated estimations in the single-
functional index model, Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression, Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

fsim.kNN.fit.optim 27

See Also

See also fsim.kNN.test, predict.fsim.kNN, plot.fsim.kNN.

Alternative procedures fsim.kernel.fit, fsim.kNN.fit.optim and fsim.kernel.fit.optim

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

#FSIM fit.
ptm<-proc.time()
fit<-fsim.kNN.fit(y=y[1:160],x=X[1:160,],max.knn=20,nknot.theta=4,nknot=20,
range.grid=c(850,1050))
proc.time()-ptm
fit
names(fit)

fsim.kNN.fit.optim Functional single-index model fit using kNN estimation and iterative
LOOCV minimisation

Description

This function fits a functional single-index model (FSIM) between a functional covariate and a
scalar response. It employs kNN estimation with Nadaraya-Watson weights and uses B-spline
expansions to represent curves and eligible functional indexes.

The function also utilises the leave-one-out cross-validation (LOOCV) criterion to select the band-
width (h.opt) and the coefficients of the functional index in the spline basis (theta.est). It per-
forms an iterative minimisation of the LOOCV objective function, starting from an initial set of
coefficients (gamma) for the functional index.

Usage

fsim.kNN.fit.optim(x, y, order.Bspline = 3, nknot.theta = 3, gamma = NULL,
knearest = NULL, min.knn = 2, max.knn = NULL, step = NULL,
kind.of.kernel = "quad", range.grid = NULL, nknot = NULL, threshold = 0.005)

Arguments

x Matrix containing the observations of the functional covariate (i.e. curves) col-
lected by row.

y Vector containing the scalar response.

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3

28 fsim.kNN.fit.optim

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

gamma Vector indicating the initial coefficients for the functional index used in the it-
erative procedure. By default, it is a vector of ones. The size of the vector is
determined by the sum nknot.theta+order.Bspline.

knearest Vector of positive integers that defines the sequence within which the opti-
mal number of nearest neighbours k.opt is selected. If knearest=NULL, then
knearest <- seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of regularly spaced interior knots for
the B-spline expansion of the functional covariate. The default value is (p -
order.Bspline - 1)%/%2.

threshold The convergence threshold for the LOOCV function (scaled by the variance of
the response). The default is 5e-3.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(⟨θ0, Xi⟩) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with an inner product ⟨·, ·⟩. The term ε denotes the random error, θ0 ∈ H is the unknown
functional index and r(·) denotes the unknown smooth link function.

The FSIM is fitted using the kNN estimator

r̂k,θ̂(x) =

n∑
i=1

wn,k,θ̂(x,Xi)Yi, ∀x ∈ H,

with Nadaraya-Watson weights

wn,k,θ̂(x,Xi) =
K

(
H−1

k,x,θ̂
dθ̂ (Xi, x)

)
∑n

i=1 K
(
H−1

k,x,θ̂
dθ̂ (Xi, x)

) ,

fsim.kNN.fit.optim 29

where

• the positive integer k is a smoothing factor, representing the number of nearest neighbours.

• K is a kernel function (see the argument kind.of.kernel).

• dθ̂(x1, x2) = |⟨θ̂, x1 − x2⟩| is the projection semi-metric and θ̂ is an estimate of θ0.

• Hk,x,θ̂ = min{h ∈ R+ such that
∑n

i=1 1Bθ̂(x,h)
(Xi) = k}, where 1Bθ̂(x,h)

(·) is the indica-
tor function of the open ball defined by the projection semi-metric, with centre x ∈ H and
radius h.

The procedure requires the estimation of the function-parameter θ0. Therefore, we use B-spline
expansions to represent curves (dimension nknot+order.Bspline) and eligible functional indexes
(dimension nknot.theta+order.Bspline). We obtain the estimated coefficients of θ0 in the spline
basis (theta.est) and the selected number of neighbours (k.opt) by minimising the LOOCV
criterion. This function performs an iterative minimisation procedure, starting from an initial set
of coefficients (gamma) for the functional index. Given a functional index, the optimal number of
neighbours according to the LOOCV criterion is selected. For a given number of neighbours, the
minimisation in the functional index is performed using the R function optim. The procedure is
iterated until convergence. For details, see Ferraty et al. (2013).

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

theta.est Coefficients of θ̂ in the B-spline basis: a vector of length(order.Bspline+nknot.theta).

k.opt Selected number of neighbours.

r.squared Coefficient of determination.

var.res Redidual variance.

df Residual degrees of freedom.

CV.opt Minimum value of the LOOCV function, i.e. the value of LOOCV for theta.est
and k.opt.

err Value of the LOOCV function divided by var(y) for each interaction.

H Hat matrix.

k.seq Sequence of eligible values for k.

CV.hseq CV values for each k.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

30 fsim.kNN.test

References

Ferraty, F., Goia, A., Salinelli, E., and Vieu, P. (2013) Functional projection pursuit regression. Test,
22, 293–320, doi:10.1007/s1174901203062.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also predict.fsim.kNN and plot.fsim.kNN.

Alternative procedures fsim.kernel.fit.optim, fsim.kernel.fit and fsim.kNN.fit.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

#FSIM fit.
ptm<-proc.time()
fit<-fsim.kNN.fit.optim(y=y[1:160],x=X[1:160,],max.knn=20,nknot.theta=4,nknot=20,
range.grid=c(850,1050))
proc.time()-ptm
fit
names(fit)

fsim.kNN.test Functional single-index kNN predictor

Description

This function computes predictions for a functional single-index model (FSIM) with a scalar re-
sponse, which is estimated using the Nadaraya-Watson kNN estimator. It requires a functional
index (θ), a global bandwidth (h), and the new observations of the functional covariate (x.test) as
inputs.

Usage

fsim.kNN.test(x, y, x.test, y.test = NULL, theta, order.Bspline = 3,
nknot.theta = 3, k = 4, kind.of.kernel = "quad", range.grid = NULL,
nknot = NULL)

https://doi.org/10.1007/s11749-012-0306-2
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

fsim.kNN.test 31

Arguments

x Matrix containing the observations of the functional covariate in the training
sample, collected by row.

y Vector containing the scalar responses in the training sample.

x.test Matrix containing the observations of the functional covariate in the the testing
sample, collected by row.

y.test (optional) Vector or matrix containing the scalar responses in the testing sample.

theta Vector containing the coefficients of θ in a B-spline basis, such that length(theta)=order.Bspline+nknot.theta

nknot.theta Number of regularly spaced interior knots in the B-spline expansion of θ0. The
default is 3.

order.Bspline Order of the B-spline basis functions. This is the number of coefficients in each
piecewise polynomial segment. The default is 3

k The number of nearest neighbours. The default is 4.

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

nknot Number of regularly spaced interior knots for the B-spline expansion of the
functional covariate. The default value is (p - order.Bspline - 1)%/%2.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(⟨θ0, Xi⟩) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with an inner product ⟨·, ·⟩. The term ε denotes the random error, θ0 ∈ H is the unknown
functional index and r(·) denotes the unknown smooth link function; n is the training sample size.

Given θ ∈ H, 1 < k < n and a testing sample {Xj , j = 1, . . . , ntest}, the predicted responses
(see the value y.estimated.test) can be computed using the kNN procedure by means of

r̂k,θ(Xj) =

n∑
i=1

wn,k,θ(Xj , Xi)Yi, j = 1, . . . , ntest,

with Nadaraya-Watson weights

wn,k,θ(Xj , Xi) =
K

(
H−1

k,Xj ,θ
dθ (Xi, Xj)

)
∑n

i=1 K
(
H−1

k,Xj ,θ
dθ (Xi, Xj)

) ,
where

• K is a kernel function (see the argument kind.of.kernel).

32 fsim.kNN.test

• for x1, x2 ∈ H, dθ(x1, x2) = |⟨θ, x1 − x2⟩| is the projection semi-metric.

• Hk,x,θ = min
{
h ∈ R+ such that

∑n
i=1 1Bθ(x,h)(Xi) = k

}
, where 1Bθ(x,h)(·) is the indica-

tor function of the open ball defined by the projection semi-metric, with centre x ∈ H and
radius h.

If the argument y.test is provided to the program (i. e. if(!is.null(y.test))), the function
calculates the mean squared error of prediction (see the value MSE.test). This is computed as
mean((y.test-y.estimated.test)^2).

Value
y.estimated.test

Predicted responses.

MSE.test Mean squared error between predicted and observed responses in the testing
sample.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kNN.fit, fsim.kNN.fit.optim and predict.fsim.kNN.

Alternative procedure fsim.kernel.test.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

train<-1:160
test<-161:215

#FSIM fit.
ptm<-proc.time()
fit<-fsim.kNN.fit(y=y[train],x=X[train,],max.knn=20,nknot.theta=4,nknot=20,

range.grid=c(850,1050))
proc.time()-ptm
fit

#FSIM prediction

https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

IASSMR.kernel.fit 33

test<-fsim.kNN.test(y=y[train],x=X[train,],x.test=X[test,],y.test=y[test],
theta=fit$theta.est,k=fit$k.opt,nknot.theta=4,nknot=20,
range.grid=c(850,1050))

#MSEP
test$MSE.test

IASSMR.kernel.fit Impact point selection with IASSMR and kernel estimation

Description

This function implements the Improved Algorithm for Sparse Semiparametric Multi-functional Re-
gression (IASSMR) with kernel estimation. This algorithm is specifically designed for estimating
multi-functional partial linear single-index models, which incorporate multiple scalar variables and
a functional covariate as predictors. These scalar variables are derived from the discretisation of a
curve and have linear effects while the functional covariate exhibits a single-index effect.

IASSMR is a two-stage procedure that selects the impact points of the discretised curve and es-
timates the model. The algorithm employs a penalised least-squares regularisation procedure, in-
tegrated with kernel estimation using Nadaraya-Watson weights. It uses B-spline expansions to
represent curves and eligible functional indexes. Additionally, it utilises an objective criterion
(criterion) to determine the initial number of covariates in the reduced model (w.opt), the band-
width (h.opt), and the penalisation parameter (lambda.opt).

Usage

IASSMR.kernel.fit(x, z, y, train.1 = NULL, train.2 = NULL,
seed.coeff = c(-1, 0, 1), order.Bspline = 3, nknot.theta = 3,
min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10, range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, vn = ncol(z), nfolds = 10,
seed = 123, wn = c(10, 15, 20), criterion = "GCV", penalty = "grSCAD",
max.iter = 1000, n.core = NULL)

Arguments

x Matrix containing the observations of the functional covariate (functional single-
index component), collected by row .

z Matrix containing the observations of the functional covariate that is discretised
(linear component), collected by row.

y Vector containing the scalar response.

train.1 Positions of the data that are used as the training sample in the 1st step. The
default setting is train.1<-1:ceiling(n/2).

train.2 Positions of the data that are used as the training sample in the 2nd step. The
default setting is train.2<-(ceiling(n/2)+1):n.

34 IASSMR.kernel.fit

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

IASSMR.kernel.fit 35

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

criterion The criterion used to select the tuning and regularisation parameters: wn.opt,
lambda.opt and h.opt (also vn.opt if needed). Options include "GCV", "BIC",
"AIC", or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

n.core Number of CPU cores designated for parallel execution. The default is n.core<-availableCores(omit=1).

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (⟨θ0, Xi⟩) + εi, (i = 1, . . . , n),

where:

• Yi represents a real random response and Xi denotes a random element belonging to some
separable Hilbert space H with inner product denoted by ⟨·, ·⟩. The second functional predic-
tor ζi is assumed to be a curve defined on the interval [a, b], observed at the points a ≤ t1 <
· · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn
)⊤ is a vector of unknown real coefficients, and r(·) denotes a smooth

unknown link function. In addition, θ0 is an unknown functional direction in H.
• εi denotes the random error.

In the MFPLSIM, it is assumed that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} are
part of the model. Therefore, the relevant variables in the linear component (the impact points of
the curve ζ on the response) must be selected, and the model estimated.

In this function, the MFPLSIM is fitted using the IASSMR. The IASSMR is a two-step procedure.
For this, we divide the sample into two independent subsamples, each asymptotically half the size
of the original sample (n1 ∼ n2 ∼ n/2). One subsample is used in the first stage of the method,
and the other in the second stage.The subsamples are defined as follows:

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified to the program through the arguments train.1 and
train.2. The superscript s, where s = 1,2, indicates the stage of the method in which the sample,
function, variable, or parameter is involved.

To explain the algorithm, we assume that the number pn of linear covariates can be expressed as
follows: pn = qnwn, with qn and wn being integers.

36 IASSMR.kernel.fit

1. First step. The FASSMR (see FASSMR.kernel.fit) combined with kernel estimation is ap-
plied using only the subsample E1. Specifically:

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the interval [a, b]. This subset is the follow-
ing:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinality) of this subset is provided to the program in the argument wn
(which contains a sequence of eligible sizes).

• Consider the following reduced model, which involves only the wn linear covariates be-
longing to R1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 , Xi

〉)
+ ε1i .

The penalised least-squares variable selection procedure, with kernel estimation, is ap-
plied to the reduced model. This is done using the function sfplsim.kernel.fit, which
requires the remaining arguments (see sfplsim.kernel.fit). The estimates obtained
after that are the outputs of the first step of the algorithm.

2. Second step. The variables selected in the first step, along with those in their neighborhood,
are included. The penalised least-squares procedure, combined with kernel estimation, is
carried out again considering only the subsample E2. Specifically:

• Consider a new set of variables:

R2
n =

⋃
{k,β̂1

0k ̸=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn = ♯(R2
n), the variables in R2

n can be renamed as follows:

R2
n =

{
ζ(t21), . . . , ζ(t

2
rn)

}
,

• Consider the following model, which involves only the linear covariates belonging to R2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) + r2

(〈
θ20 , Xi

〉)
+ ε2i .

The penalised least-squares variable selection procedure, with kernel estimation, is ap-
plied to this model using the function sfplsim.kernel.fit.

The outputs of the second step are the estimates of the MFPLSIM. For further details on this algo-
rithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

The function supports parallel computation. To avoid it, we can set n.core=1.

IASSMR.kernel.fit 37

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
h.opt and vn.opt are used).

theta.est Coefficients of θ̂ in the B-spline basis (i.e. estimate of θ0when the optimal tun-
ing parameters w.opt, lambda.opt, h.opt and vn.opt are used): a vector of
length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth (when w.opt is considered).

w.opt Selected size for R1
n.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, h.opt
and vn.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

theta2 Estimate of θ20 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

h2 Selected bandwidth in the second step of the algorithm for each value of the
sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the entire set of pn) used to build R2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

theta1 Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

h1 Selected bandwidth in the first step of the algorithm for each value of the se-
quence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to build R1
n for each value

of the sequence wn.

38 IASSMR.kernel.fit

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

... Further outputs to apply S3 methods.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kernel.fit, predict.IASSMR.kernel, plot.IASSMR.kernel and FASSMR.kernel.fit.

Alternative methods IASSMR.kNN.fit, FASSMR.kernel.fit and FASSMR.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- IASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35, nknot=20,
criterion="BIC", max.iter=5000)

proc.time()-ptm

fit
names(fit)

https://doi.org/10.1111/anzs.12355

IASSMR.kNN.fit 39

IASSMR.kNN.fit Impact point selection with IASSMR and kNN estimation

Description

This function implements the Improved Algorithm for Sparse Semiparametric Multi-functional Re-
gression (IASSMR) with kNN estimation. This algorithm is specifically designed for estimating
multi-functional partial linear single-index models, which incorporate multiple scalar variables and
a functional covariate as predictors. These scalar variables are derived from the discretisation of a
curve and have linear effects while the functional covariate exhibits a single-index effect.

IASSMR is a two-stage procedure that selects the impact points of the discretised curve and esti-
mates the model. The algorithm employs a penalised least-squares regularisation procedure, in-
tegrated with kNN estimation using Nadaraya-Watson weights. It uses B-spline expansions to
represent curves and eligible functional indexes. Additionally, it utilises an objective criterion
(criterion) to determine the initial number of covariates in the reduced model (w.opt), the number
of neighbours (k.opt), and the penalisation parameter (lambda.opt).

Usage

IASSMR.kNN.fit(x, z, y, train.1 = NULL, train.2 = NULL,
seed.coeff = c(-1, 0, 1), order.Bspline = 3, nknot.theta = 3, knearest = NULL,
min.knn = 2, max.knn = NULL, step = NULL, range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, vn = ncol(z), nfolds = 10,
seed = 123, wn = c(10, 15, 20), criterion = "GCV", penalty = "grSCAD",
max.iter = 1000, n.core = NULL)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

train.1 Positions of the data that are used as the training sample in the 1st step. The
default setting is train.1<-1:ceiling(n/2).

train.2 Positions of the data that are used as the training sample in the 2nd step. The
default setting is train.2<-(ceiling(n/2)+1):n.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

40 IASSMR.kNN.fit

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

IASSMR.kNN.fit 41

criterion The criterion used to select the tuning and regularisation parameters: wn.opt,
lambda.opt and k.opt (also vn.opt if needed). Options include "GCV", "BIC",
"AIC", or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

n.core Number of CPU cores designated for parallel execution. The default is n.core<-availableCores(omit=1).

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (⟨θ0, Xi⟩) + εi, (i = 1, . . . , n),

where:

• Yi represents a real random response and Xi denotes a random element belonging to some
separable Hilbert space H with inner product denoted by ⟨·, ·⟩. The second functional predic-
tor ζi is assumed to be a curve defined on the interval [a, b], observed at the points a ≤ t1 <
· · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn
)⊤ is a vector of unknown real coefficients, and r(·) denotes a smooth

unknown link function. In addition, θ0 is an unknown functional direction in H.

• εi denotes the random error.

In the MFPLSIM, it is assumed that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} are
part of the model. Therefore, the relevant variables in the linear component (the impact points of
the curve ζ on the response) must be selected, and the model estimated.

In this function, the MFPLSIM is fitted using the IASSMR. The IASSMR is a two-step procedure.
For this, we divide the sample into two independent subsamples, each asymptotically half the size
of the original (n1 ∼ n2 ∼ n/2). One subsample is used in the first stage of the method, and the
other in the second stage.The subsamples are defined as follows:

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified in the program through the arguments train.1 and
train.2. The superscript s, where s = 1,2, indicates the stage of the method in which the sample,
function, variable, or parameter is involved.

To explain the algorithm, we assume that the number pn of linear covariates can be expressed as
follows: pn = qnwn, with qn and wn being integers.

1. First step. The FASSMR (see FASSMR.kNN.fit) combined with kNN estimation is applied
using only the subsample E1. Specifically:

42 IASSMR.kNN.fit

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the entire interval [a, b]. This subset is the
following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinality) of this subset is provided to the program in the argument wn
(which contains a sequence of eligible sizes).

• Consider the following reduced model, which involves only the wn linear covariates be-
longing to R1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 , Xi

〉)
+ ε1i .

The penalised least-squares variable selection procedure, with kNN estimation, is applied
to the reduced model. This is done using the function sfplsim.kNN.fit, which requires
the remaining arguments (see sfplsim.kNN.fit). The estimates obtained after that are
the outputs of the first step of the algorithm.

2. Second step. The variables selected in the first step, along with those in their neighborhood,
are included. The penalised least-squares procedure, combined with kNN estimation, is car-
ried out again considering only the subsample E2. Specifically:

• Consider a new set of variables:

R2
n =

⋃
{k,β̂1

0k ̸=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn = ♯(R2
n), the variables in R2

n can be renamed as follows:

R2
n =

{
ζ(t21), . . . , ζ(t

2
rn)

}
,

• Consider the following model, which involves only the linear covariates belonging to R2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) + r2

(〈
θ20 , Xi

〉)
+ ε2i .

The penalised least-squares variable selection procedure, with kNN estimation, is applied
to this model using the function sfplsim.kNN.fit.

The outputs of the second step are the estimates of the MFPLSIM. For further details on this algo-
rithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer number), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

The function supports parallel computation. To avoid it, we can set n.core=1.

IASSMR.kNN.fit 43

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
vn.opt and k.opt are used).

theta.est Coefficients of θ̂ in the B-spline basis (i.e. estimate of θ0 when the optimal
tuning parameters w.opt, lambda.opt, vn.opt and k.opt are used): a vector
of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours (when w.opt is considered).

w.opt Selected initial number of covariates in the reduced model.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, vn.opt
and k.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

theta2 Estimate of θ20 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

knn2 Selected number of neighbours in the second step of the algorithm for each value
of the sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the entire set of pn) used to build R2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

theta1 Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

knn1 Selected number of neighbours in the first step of the algorithm for each value
of the sequence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to build R1
n for each value

of the sequence wn.

44 IASSMR.kNN.fit

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kNN.fit, predict.IASSMR.kNN, plot.IASSMR.kNN and FASSMR.kNN.fit.

Alternative method IASSMR.kernel.fit

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- IASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.07,
lambda.min.l=0.07, max.knn=20, nknot=20,criterion="BIC", max.iter=5000)

proc.time()-ptm

fit
names(fit)

https://doi.org/10.1111/anzs.12355

lm.pels.fit 45

lm.pels.fit Regularised fit of sparse linear regression

Description

This function fits a sparse linear model between a scalar response and a vector of scalar covari-
ates. It employs a penalised least-squares regularisation procedure, with either (group)SCAD or
(group)LASSO penalties. The method utilises an objective criterion (criterion) to select the op-
timal regularisation parameter (lambda.opt).

Usage

lm.pels.fit(z, y, lambda.min = NULL, lambda.min.h = NULL, lambda.min.l = NULL,
factor.pn = 1, nlambda = 100, lambda.seq = NULL, vn = ncol(z), nfolds = 10,
seed = 123, criterion = "GCV", penalty = "grSCAD", max.iter = 1000)

Arguments

z Matrix containing the observations of the covariates collected by row.

y Vector containing the scalar response.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,
then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

46 lm.pels.fit

criterion The criterion used to select the regularisation parameter lambda.opt (also vn.opt
if needed). Options include "GCV", "BIC", "AIC", or "k-fold-CV". The default
setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

Details

The sparse linear model (SLM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipn
β0pn

+ εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn
are real covariates. In this equation, β0 =

(β01, . . . , β0pn
)⊤ is a vector of unknown real parameters and εi represents the random error.

In this function, the SLM is fitted using a penalised least-squares (PeLS) approach by minimising

Q (β) =
1

2
(Y − Zβ)

⊤
(Y − Zβ) + n

pn∑
j=1

Pλjn
(|βj |) , (1)

where β = (β1, . . . , βpn)
⊤, Pλjn

(·) is a penalty function (specified in the argument penalty)
and λjn > 0 is a tuning parameter. To reduce the number of tuning parameters, λj , to be selected
for each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j

and σ̂β0,j,OLS
is the estimated standard deviation. The parameter λ is selected using the objetive

criterion specified in the argument criterion.

For further details on the estimation procedure of the SLM, see e.g. Fan and Li. (2001). The PeLS
objective function is minimised using the R function grpreg of the package grpreg (Breheny and
Huang, 2015).

Remark: It should be noted that if we set lambda.seq to = 0, we obtain the non-penalised estima-
tion of the model, i.e. the OLS estimation. Using lambda.seq with a vaule ̸= 0 is advisable when
suspecting the presence of irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est Estimate of β0 when the optimal penalisation parameter lambda.opt and vn.opt
are used.

indexes.beta.nonnull

Indexes of the non-zero β̂j .

lambda.opt Selected value of lambda.

IC Value of the criterion function considered to select lambda.opt and vn.opt.

vn.opt Selected value of vn.

...

plot.classes 47

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Breheny, P., and Huang, J. (2015) Group descent algorithms for nonconvex penalized linear and lo-
gistic regression models with grouped predictors. Statistics and Computing, 25, 173–187, doi:10.1007/
s1122201394242.

Fan, J., and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle prop-
erties. Journal of the American Statistical Association, 96, 1348–1360, doi:10.1198/016214501753382273.

See Also

See also PVS.fit.

Examples

data("Tecator")
y<-Tecator$fat
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#LM fit
ptm=proc.time()
fit<-lm.pels.fit(z=z.com[train,], y=y[train],lambda.min.h=0.02,

lambda.min.l=0.01,factor.pn=2, max.iter=5000, criterion="BIC")
proc.time()-ptm

#Results
fit
names(fit)

plot.classes Graphical representation of regression model outputs

Description

plot functions to generate visual representations for the outputs of several fitting functions: FASSMR.kernel.fit,
FASSMR.kNN.fit, fsim.kernel.fit, fsim.kernel.fit.optim, fsim.kNN.fit, fsim.kNN.fit.optim,
IASSMR.kernel.fit, IASSMR.kNN.fit, lm.pels.fit, PVS.fit, PVS.kernel.fit, PVS.kNN.fit,
sfpl.kernel.fit, sfpl.kNN.fit,sfplsim.kernel.fit and sfplsim.kNN.fit.

https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1198/016214501753382273

48 plot.classes

Usage

S3 method for class 'FASSMR.kernel'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0,...)

S3 method for class 'FASSMR.kNN'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0, ...)

S3 method for class 'fsim.kernel'
plot(x,size=15,col1=1,col2=2, ...)

S3 method for class 'fsim.kNN'
plot(x,size=15,col1=1,col2=2,...)

S3 method for class 'IASSMR.kernel'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0, ...)

S3 method for class 'IASSMR.kNN'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0, ...)

S3 method for class 'lm.pels'
plot(x,size=15,col1=1,col2=2,col3=4, ...)

S3 method for class 'PVS'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0, ...)

S3 method for class 'PVS.kernel'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0, ...)

S3 method for class 'PVS.kNN'
plot(x,ind=1:10, size=15,col1=1,col2=2,col3=4,option=0, ...)

S3 method for class 'sfpl.kernel'
plot(x,size=15,col1=1,col2=2,col3=4, ...)

S3 method for class 'sfpl.kNN'
plot(x,size=15,col1=1,col2=2,col3=4, ...)

S3 method for class 'sfplsim.kernel'
plot(x,size=15,col1=1,col2=2,col3=4, ...)

S3 method for class 'sfplsim.kNN'
plot(x,size=15,col1=1,col2=2,col3=4, ...)

Arguments

x Output of the functions mentioned in the Description (i.e. an object of the
class FASSMR.kernel, FASSMR.kNN, fsim.kernel,fsim.kNN, IASSMR.kernel,
IASSMR.kNN, lm.pels, PVS, PVS.kernel, PVS.kNN, sfpl.kernel,sfpl.kNN,

plot.classes 49

sfplsim.kernel or sfplsim.kNN).
ind Indexes of the colors for the curves in the chart of estimated impact points. The

default is 1:10
size The size for title and axis labels in pts. The default is 15.
col1 Color of the points in the charts. Also, color of the estimated functional index

representation. The default is black.
col2 Color of the nonparametric fit representation in FSIM functions, and of the

straight line in ’Response vs Fitted Values’ charts. The default is red.
col3 Color of the nonparametric fit of the residuals in ’Residuals vs Fitted Values’

charts. The default is blue.
option Selection of charts to be plotted. The default, option = 0, means all charts are

plotted. See the section Details.
... Further arguments passed to or from other methods.

Value

The functions return different graphical representations.

• For the classes fsim.kNN and fsim.kernel:
1. The estimated functional index: θ̂.
2. The regression fit.

• For the classes lm.pels, sfpl.kernel and sfpl.kNN:
1. The response over the fitted.values.
2. The residuals over the fitted.values.

• For the classes sfplsim.kernel and sfplsim.kNN:
1. The estimated functional index: θ̂.
2. The response over the fitted.values.
3. The residuals over the fitted.values.

• For the classes FASSMR.kernel, FASSMR.kNN, IASSMR.kernel, IASSMR.kNN, sfplsim.kernel
and sfplsim.kNN:

1. If option=1: The curves with the estimated impact points (in dashed vertical lines).
2. If option=2: The estimated functional index: θ̂.
3. If option=3:

– The response over the fitted.values.
– The residuals over the fitted.values.

4. If option=0: All chart are plotted.
• For the classes PVS, PVS.kNN, PVS.kernel:

1. If option=1: The curves with the estimated impact points (in dashed vertical lines).
2. If option=2:

– The response over the fitted.values.
– The residuals over the fitted.values.

3. If option=0: All chart are plotted.

All the routines implementing the plot S3 method use internally the R package ggplot2 to produce
elegant and high quality charts.

50 predict.fsim

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

FASSMR.kernel.fit, FASSMR.kNN.fit, fsim.kernel.fit, fsim.kNN.fit, IASSMR.kernel.fit,
IASSMR.kNN.fit, lm.pels.fit, PVS.fit, PVS.kernel.fit, PVS.kNN.fit, sfpl.kernel.fit,
sfpl.kNN.fit, sfplsim.kernel.fit and sfplsim.kNN.fit.

predict.fsim Prediction for FSIM

Description

predict method for the functional single-index model (FSIM) fitted using fsim.kernel.fit,
fsim.kernel.fit.optim, fsim.kNN.fit and fsim.kNN.fit.optim.

Usage

S3 method for class 'fsim.kernel'
predict(object, newdata = NULL, y.test = NULL, ...)
S3 method for class 'fsim.kNN'
predict(object, newdata = NULL, y.test = NULL, ...)

Arguments

object Output of the fsim.kernel.fit, fsim.kernel.fit.optim, fsim.kNN.fit or
fsim.kNN.fit.optim functions (i.e. an object of the class fsim.kernel or
fsim.kNN).

newdata A matrix containing new observations of the functional covariate collected by
row.

y.test (optional) A vector containing the new observations of the response.

... Further arguments passed to or from other methods.

Details

The prediction is computed using the functions fsim.kernel.test and fsim.kernel.fit, respec-
tively.

Value

The function returns the predicted values of the response (y) for newdata. If !is.null(y.test),
it also provides the mean squared error of prediction (MSEP) computed as mean((y-y.test)^2). If
is.null(newdata) the function returns the fitted values.

predict.IASSMR 51

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

fsim.kernel.fit and fsim.kernel.test or fsim.kNN.fit and fsim.kNN.test.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

train<-1:160
test<-161:215

#FSIM fit.
fit.kernel<-fsim.kernel.fit(y[train],x=X[train,],max.q.h=0.35, nknot=20,
range.grid=c(850,1050),nknot.theta=4)
fit.kNN<-fsim.kNN.fit(y=y[train],x=X[train,],max.knn=20,nknot=20,
nknot.theta=4, range.grid=c(850,1050))

test<-161:215

pred.kernel<-predict(fit.kernel,newdata=X[test,],y.test=y[test])
pred.kernel$MSEP
pred.kNN<-predict(fit.kNN,newdata=X[test,],y.test=y[test])
pred.kNN$MSEP

predict.IASSMR Prediction for MFPLSIM

Description

predict method for the multi-functional partial linear single-index model (MFPLSIM) fitted using
IASSMR.kernel.fit or IASSMR.kNN.fit.

Usage

S3 method for class 'IASSMR.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'IASSMR.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, knearest.n = object$knearest,
min.knn.n = object$min.knn, max.knn.n = object$max.knn.n,
step.n = object$step, ...)

52 predict.IASSMR

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class IASSMR.kernel or IASSMR.kNN).

newdata.x A matrix containing new observations of the functional covariate in the func-
tional single-index component, collected by row.

newdata.z Matrix containing the new observations of the scalar covariates derived from the
discretisation of a curve, collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the choice between 1, 2 and 3. The default is 1. See the section Details.

... Further arguments.

knearest.n Only used for objects IASSMR.kNN if option=2 or option=3: vector of positive
integers containing the sequence in which the number of nearest neighbours
k.opt is selected. The default is object$knearest.

min.knn.n Only used for objects IASSMR.kNN if option=2 or option=3: minumum value
of the sequence in which the number of neighbours k.opt is selected (thus, this
number must be smaller than the sample size). The default is object$min.knn.

max.knn.n Only used for objects IASSMR.kNN if option=2 or option=3: maximum value
of the sequence in which the number of neighbours k.opt is selected (thus, this
number must be larger than min.kNN and smaller than the sample size). The
default is object$max.knn.

step.n Only used for objects IASSMR.kNN if option=2 or option=3: positive inte-
ger used to build the sequence of k-nearest neighbours as follows: min.knn,
min.knn + step.n, min.knn + 2*step.n, min.knn + 3*step.n,.... The de-
fault is object$step.

Details

Three options are provided to obtain the predictions of the response for newdata.x and newdata.z:

• If option=1, we maintain all the estimates (k.opt or h.opt, theta.est and beta.est) to
predict the functional single-index component of the model. As we use the estimates of the
second step of the algorithm, only the train.2 is used as training sample to predict. Then, it
should be noted that k.opt or h.opt may not be suitable to predict the functional single-index
component of the model.

• If option=2, we maintain theta.est and beta.est, while the tuning parameter (h or k) is
selected again to predict the functional single-index component of the model. This selection
is performed using the leave-one-out cross-validation criterion in the functional single-index
model associated and the complete training sample (i.e. train=c(train.1,train.2)). As
we use the entire training sample (not just a subsample of it), the sample size is modified and,
as a consequence, the parameters knearest, min.knn, max.knn, step given to the function
IASSMR.kNN.fit may need to be provided again to compute predictions. For that, we add the
arguments knearest.n, min.knn.n, max.knn.n and step.n.

• If option=3, we maintain only the indexes of the relevant variables selected by the IASSMR.
We estimate again the linear coefficients and the functional index by means of sfplsim.kernel.fit
or sfplsim.kNN.fit, respectively, without penalisation (setting lambda.seq=0) and using

predict.IASSMR 53

the whole training sample (train=c(train.1,train.2)). The method provides two predic-
tions (and MSEPs):

– a) The prediction associated with option=1 for sfplsim.kernel or sfplsim.kNN class.
– b) The prediction associated with option=2 for sfplsim.kernel or sfplsim.kNN class.

(see the documentation of the functions predict.sfplsim.kernel and predict.sfplsim.kNN)

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If option=3, two sets of predictions (and two MSEPs) are provided, cor-
responding to the items a) and b) mentioned in the section Details. If is.null(newdata.x) or
is.null(newdata.z), the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfplsim.kernel.fit, sfplsim.kNN.fit, IASSMR.kernel.fit, IASSMR.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
test<-217:266

#Fit
fit.kernel<-IASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35, nknot=20,criterion="BIC",
max.iter=5000)

54 predict.lm

fit.kNN<- IASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.07,
lambda.min.l=0.07, max.knn=20, nknot=20,criterion="BIC",
max.iter=5000)

#Predictions
predict(fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
predict(fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)

predict.lm Prediction for linear models

Description

predict method for:

• Linear model (LM) fitted using lm.pels.fit.

• Linear model with covariates derived from the discretization of a curve fitted using PVS.fit.

Usage

S3 method for class 'lm.pels'
predict(object, newdata = NULL, y.test = NULL, ...)
S3 method for class 'PVS'
predict(object, newdata = NULL, y.test = NULL, ...)

Arguments

object Output of the lm.pels.fit or PVS.fit functions (i.e. an object of the class
lm.pels or PVS)

newdata Matrix containing the new observations of the scalar covariates (LM), or the
scalar covariates resulting from the discretisation of a curve. Observations are
collected by row.

y.test (optional) A vector containing the new observations of the response.

... Further arguments passed to or from other methods.

Value

The function returns the predicted values of the response (y) for newdata. If !is.null(y.test),
it also provides the mean squared error of prediction (MSEP) computed as mean((y-y.test)^2). If
is.null(newdata), then the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

predict.lm 55

See Also

lm.pels.fit and PVS.fit.

Examples

data("Tecator")
y<-Tecator$fat
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215

#LM fit.
fit<-lm.pels.fit(z=z.com[train,], y=y[train],lambda.min.l=0.01,

factor.pn=2, max.iter=5000, criterion="BIC")

#Predictions
predict(fit,newdata=z.com[test,],y.test=y[test])

data(Sugar)

y<-Sugar$ash
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
test<-217:266

#Fit
fit.pvs<-PVS.fit(z=z.sug[train,], y=y.sug[train],train.1=1:108,train.2=109:216,

lambda.min.h=0.2,criterion="BIC", max.iter=5000)

#Predictions
predict(fit.pvs,newdata=z.sug[test,],y.test=y.sug[test])

56 predict.mfplm.PVS

predict.mfplm.PVS Prediction for MFPLM

Description

predict method for the multi-functional partial linear model (MFPLM) fitted using PVS.kernel.fit
or PVS.kNN.fit.

Usage

S3 method for class 'PVS.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'PVS.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, knearest.n = object$knearest,
min.knn.n = object$min.knn, max.knn.n = object$max.knn.n,
step.n = object$step, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class PVS.kernel or PVS.kNN).

newdata.x A matrix containing new observations of the functional covariate in the func-
tional nonparametric component, collected by row.

newdata.z Matrix containing the new observations of the scalar covariates derived from the
discretisation of a curve, collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the selection among the choices 1, 2 and 3 for PVS.kernel objects, and
1, 2, 3, and 4 for PVS.kNN objects. The default setting is 1. See the section
Details.

... Further arguments.

knearest.n Only used for objects PVS.kNN if option=2, option=3 or option=4: sequence
in which the number of nearest neighbours k.opt is selected. The default is
object$knearest.

min.knn.n Only used for objects PVS.kNN if option=2, option=3 or option=4: minumum
value of the sequence in which the number of nearest neighbours k.opt is se-
lected (thus, this number must be smaller than the sample size). The default is
object$min.knn.

max.knn.n Only used for objects PVS.kNN if option=2, option=3 or option=4: maxi-
mum value of the sequence in which the number of nearest neighbours k.opt
is selected (thus, this number must be larger than min.kNN and smaller than the
sample size). The default is object$max.knn.

predict.mfplm.PVS 57

step.n Only used for objects PVS.kNN if option=2, option=3 or option=4: positive
integer used to build the sequence of k-nearest neighbours in the following way:
min.knn, min.knn + step.n, min.knn + 2*step.n, min.knn + 3*step.n,....
The default is object$step.

Details

To obtain the predictions of the response for newdata.x and newdata.z, the following options are
provided:

• If option=1, we maintain all the estimates (k.opt or h.opt and beta.est) to predict the
functional nonparametric component of the model. As we use the estimates of the second
step of the algorithm, only the train.2 is used as training sample to predict. Then, it should
be noted that k.opt or h.opt may not be suitable to predict the functional nonparametric
component of the model.

• If option=2, we maintain beta.est, while the tuning parameter (h or k) is selected again
to predict the functional nonparametric component of the model. This selection is performed
using the leave-one-out cross-validation (LOOCV) criterion in the associated functional non-
parametric model and the complete training sample (i.e. train=c(train.1,train.2)), ob-
taining a global selection for h or k. As we use the entire training sample (not just a subsample
of it), the sample size is modified and, as a consequence, the parameters knearest, min.knn,
max.knn, and step given to the function IASSMR.kNN.fit may need to be provided again to
compute predictions. For that, we add the arguments knearest.n, min.knn.n, max.knn.n
and step.mn.

• If option=3, we maintain only the indexes of the relevant variables selected by the IASSMR.
We estimate again the linear coefficients using sfpl.kernel.fit or sfpl.kNN.fit, respec-
tively, without penalisation (setting lambda.seq=0) and using the entire training sample (train=c(train.1,train.2)).
The method provides two predictions (and MSEPs):

– a) The prediction associated with option=1 for sfpl.kernel or sfpl.kNN class.
– b) The prediction associated with option=2 for sfpl.kernel or sfpl.kNN class.

(see the documentation of the functions predict.sfpl.kernel and predict.sfpl.kNN)
• If option=4 (an option only available for the class PVS.kNN) we maintain beta.est, while

the tuning parameter k is selected again to predict the functional nonparametric component of
the model. This selection is performed using LOOCV criterion in the functional nonparamet-
ric model associated and the complete training sample (i.e. train=c(train.1,train.2)),
obtaining a local selection for k.

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If option=3, two sets of predictions (and two MSEPs) are provided, cor-
responding to the items a) and b) mentioned in the section Details. If is.null(newdata.x) or
is.null(newdata.z), then the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

58 predict.sfpl

See Also

PVS.kernel.fit, sfpl.kernel.fit and predict.sfpl.kernel or PVS.kNN.fit, sfpl.kNN.fit
and predict.sfpl.kNN.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
test<-217:266

#Fit
fit.kernel<- PVS.kernel.fit(x=x.sug[train,],z=z.sug[train,],

y=y.sug[train],train.1=1:108,train.2=109:216,
lambda.min.h=0.03,lambda.min.l=0.03,
max.q.h=0.35, nknot=20,criterion="BIC",
max.iter=5000)

fit.kNN<- PVS.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
train.1=1:108,train.2=109:216,lambda.min.h=0.07,
lambda.min.l=0.07, nknot=20,criterion="BIC",
max.iter=5000)

#Preditions
predict(fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
predict(fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)

predict.sfpl Predictions for SFPLM

Description

predict method for the semi-functional partial linear model (SFPLM) fitted using sfpl.kernel.fit
or sfpl.kNN.fit.

predict.sfpl 59

Usage

S3 method for class 'sfpl.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'sfpl.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class sfpl.kernel or sfpl.kNN.

newdata.x Matrix containing new observations of the functional covariate collected by row.

newdata.z Matrix containing the new observations of the scalar covariate collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the selection among the choices 1 and 2 for sfpl.kernel objects, and 1,
2 and 3 for sfpl.kNN objects. The default setting is 1. See the section Details.

... Further arguments passed to or from other methods.

Details

The following options are provided to obtain the predictions of the response for newdata.x and
newdata.z:

• If option=1, we maintain all the estimations (k.opt or h.opt and beta.est) to predict the
functional nonparametric component of the model.

• If option=2, we maintain beta.est, while the tuning parameter (h or k) is selected again
to predict the functional nonparametric component of the model. This selection is performed
using the leave-one-out cross-validation (LOOCV) criterion in the associated functional non-
parametric model, obtaining a global selection for h or k.

In the case of sfpl.kNN objects if option=3, we maintain beta.est, while the tuning parameter
k is seleted again to predict the functional nonparametric component of the model. This selec-
tion is performed using the LOOCV criterion in the associated functional nonparametric model,
performing a local selection for k.

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If is.null(newdata.x) or is.null(newdata.z), then the function re-
turns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

60 predict.sfplsim.FASSMR

See Also

sfpl.kernel.fit and sfpl.kNN.fit

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215

#Fit
fit.kernel<-sfpl.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],q=2,

max.q.h=0.35,lambda.min.l=0.01, factor.pn=2,
criterion="BIC", range.grid=c(850,1050), nknot=20, max.iter=5000)

fit.kNN<-sfpl.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],q=2,
max.knn=20,lambda.min.l=0.01, factor.pn=2,
criterion="BIC",range.grid=c(850,1050), nknot=20, max.iter=5000)

#Predictions
predict(fit.kernel,newdata.x=X[test,],newdata.z=z.com[test,],y.test=y[test],

option=2)
predict(fit.kNN,newdata.x=X[test,],newdata.z=z.com[test,],y.test=y[test],

option=2)

predict.sfplsim.FASSMR

Prediction for SFPLSIM and MFPLSIM (using FASSMR)

Description

predict S3 method for:

• Semi-functional partial linear single-index model (SFPLSIM) fitted using sfplsim.kernel.fit
or sfplsim.kNN.fit.

• Multi-functional partial linear single-index model (MFPLSIM) fitted using FASSMR.kernel.fit
or FASSMR.kNN.fit.

predict.sfplsim.FASSMR 61

Usage

S3 method for class 'sfplsim.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'sfplsim.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'FASSMR.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'FASSMR.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class sfplsim.kernel, sfplsim.kNN, FASSMR.kernel or FASSMR.kNN).

newdata.x A matrix containing new observations of the functional covariate in the functional-
single index component collected by row.

newdata.z Matrix containing the new observations of the scalar covariates (SFPLSIM) or
of the scalar covariates coming from the discretisation of a curve (MFPLSIM),
collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the choice between 1 and 2. The default is 1. See the section Details.

... Further arguments passed to or from other methods.

Details

Two options are provided to obtain the predictions of the response for newdata.x and newdata.z:

• If option=1, we maintain all the estimations (k.opt or h.opt, theta.est and beta.est) to
predict the functional single-index component of the model.

• If option=2, we maintain theta.est and beta.est, while the tuning parameter (h or k) is
selected again to predict the functional single-index component of the model. This selection
is performed using the leave-one-out cross-validation criterion in the associated functional
single-index model.

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If is.null(newdata.x) or is.null(newdata.z), then the function re-
turns the fitted values.

62 predict.sfplsim.FASSMR

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfplsim.kernel.fit, sfplsim.kNN.fit, FASSMR.kernel.fit or FASSMR.kNN.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215

#SFPLSIM fit. Convergence errors for some theta are obtained.
s.fit.kernel<-sfplsim.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],

max.q.h=0.35,lambda.min.l=0.01, factor.pn=2, nknot.theta=4,
criterion="BIC", range.grid=c(850,1050),
nknot=20, max.iter=5000)

s.fit.kNN<-sfplsim.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],
max.knn=20,lambda.min.l=0.01, factor.pn=2, nknot.theta=4,
criterion="BIC",range.grid=c(850,1050),
nknot=20, max.iter=5000)

predict(s.fit.kernel,newdata.x=X[test,],newdata.z=z.com[test,],
y.test=y[test],option=2)

predict(s.fit.kNN,newdata.x=X[test,],newdata.z=z.com[test,],
y.test=y[test],option=2)

data(Sugar)
y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]

print.summary.fsim 63

y.sug <- y[!index.atip]

train<-1:216
test<-217:266

m.fit.kernel <- FASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,],
y=y.sug[train], nknot.theta=2,
lambda.min.l=0.03, max.q.h=0.35,num.h = 10,
nknot=20,criterion="BIC", max.iter=5000)

m.fit.kNN<- FASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
nknot.theta=2, lambda.min.l=0.03,
max.knn=20,nknot=20,criterion="BIC",max.iter=5000)

predict(m.fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],
y.test=y.sug[test],option=2)

predict(m.fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],
y.test=y.sug[test],option=2)

print.summary.fsim Summarise information from FSIM estimation

Description

summary and print functions for fsim.kNN.fit, fsim.kNN.fit.optim, fsim.kernel.fit and
fsim.kernel.fit.optim.

Usage

S3 method for class 'fsim.kernel'
print(x, ...)
S3 method for class 'fsim.kNN'
print(x, ...)
S3 method for class 'fsim.kernel'
summary(object, ...)
S3 method for class 'fsim.kNN'
summary(object, ...)

Arguments

x Output of the fsim.kernel.fit, fsim.kernel.fit.optim, fsim.kNN.fit or
fsim.kNN.fit.optim functions (i.e. an object of the class fsim.kernel or
fsim.kNN).

... Further arguments.
object Output of the fsim.kernel.fit, fsim.kernel.fit.optim, fsim.kNN.fit or

fsim.kNN.fit.optim functions (i.e. an object of the class fsim.kernel or
fsim.kNN).

64 print.summary.lm

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• Coefficients of θ̂ in the B-spline basis (theta.est: a vector of length(order.Bspline+nknot.theta).

• Minimum value of the CV function, i.e. the value of CV for theta.est and h.opt/k.opt.

• R squared.

• Residual variance.

• Residual degrees of freedom.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

fsim.kernel.fit and fsim.kNN.fit.

print.summary.lm Summarise information from linear models estimation

Description

summary and print functions for lm.pels.fit and PVS.fit.

Usage

S3 method for class 'lm.pels'
print(x, ...)
S3 method for class 'PVS'
print(x, ...)
S3 method for class 'lm.pels'
summary(object, ...)
S3 method for class 'PVS'
summary(object, ...)

Arguments

x Output of the lm.pels.fit or PVS.fit functions (i.e. an object of the class
lm.pels or PVS).

... Further arguments.

object Output of the lm.pels.fit or PVS.fit functions (i.e. an object of the class
lm.pels or PVS).

print.summary.mfpl 65

Value

• The matched call.

• The estimated intercept of the model.

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i.e. the value obtained with lambda.opt and
vn.opt (and w.opt in the case of the PVS).

• Minimum value of the penalised least-squares function. That is, the value obtained using
beta.est and lambda.opt.

• The penalty function used.

• The criterion used to select the penalisation parameter and vn.

• The optimal value of vn in the case of the lm.pels object.

In the case of the PVS objects, these functions also return the optimal number of covariates required
to construct the reduced model in the first step of the algorithm (w.opt). This value is selected using
the same criterion employed for selecting the penalisation parameter.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

lm.pels.fit and PVS.fit.

print.summary.mfpl Summarise information from MFPLM estimation

Description

summary and print functions for PVS.kernel.fit and PVS.kNN.fit.

Usage

S3 method for class 'PVS.kernel'
print(x, ...)
S3 method for class 'PVS.kNN'
print(x, ...)
S3 method for class 'PVS.kernel'
summary(object, ...)
S3 method for class 'PVS.kNN'
summary(object, ...)

66 print.summary.mfplsim

Arguments

x Output of the PVS.kernel.fit or PVS.kNN.fit functions (i.e. an object of the
class PVS.kernel or PVS.kNN).

... Further arguments.

object Output of the PVS.kernel.fit or PVS.kNN.fit functions (i.e. an object of the
class PVS.kernel or PVS.kNN).

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• The optimal initial number of covariates to build the reduced model (w.opt).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i.e. the value obtained with w.opt, lambda.opt,
vn.opt and h.opt/k.opt

• Minimum value of the penalised least-squares function. That is, the value obtained using
beta.est and lambda.opt.

• The penalty function used.

• The criterion used to select the number of covariates employed to construct the reduced model,
the tuning parameter, the penalisation parameter and vn.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

PVS.kernel.fit and PVS.kNN.fit.

print.summary.mfplsim Summarise information from MFPLSIM estimation

Description

summary and print functions for FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit
and IASSMR.kNN.fit.

print.summary.mfplsim 67

Usage

S3 method for class 'FASSMR.kernel'
print(x, ...)
S3 method for class 'FASSMR.kNN'
print(x, ...)
S3 method for class 'IASSMR.kernel'
print(x, ...)
S3 method for class 'IASSMR.kNN'
print(x, ...)
S3 method for class 'FASSMR.kernel'
summary(object, ...)
S3 method for class 'FASSMR.kNN'
summary(object, ...)
S3 method for class 'IASSMR.kernel'
summary(object, ...)
S3 method for class 'IASSMR.kNN'
summary(object, ...)

Arguments

x Output of the FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit or
IASSMR.kNN.fit functions (i.e. an object of the class FASSMR.kernel, FASSMR.kNN,
IASSMR.kernel or IASSMR.kNN).

... Further arguments passed to or from other methods.

object Output of the FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit or
IASSMR.kNN.fit functions (i.e. an object of the class FASSMR.kernel, FASSMR.kNN,
IASSMR.kernel or IASSMR.kNN).

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• The optimal initial number of covariates to build the reduced model (w.opt).

• Coefficients of θ̂ in the B-spline basis (theta.est): a vector of length(order.Bspline+nknot.theta).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i.e. the value obtained with w.opt, lambda.opt,
vn.opt and h.opt/k.opt

• Minimum value of the penalised least-squares function. That is, the value obtained using
theta.est, beta.est and lambda.opt.

• The penalty function used.

• The criterion used to select the number of covariates employed to construct the reduced model,
the tuning parameter, the penalisation parameter and vn.

68 print.summary.sfpl

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit and IASSMR.kNN.fit.

print.summary.sfpl Summarise information from SFPLM estimation

Description

summary and print functions for sfpl.kNN.fit and sfpl.kernel.fit.

Usage

S3 method for class 'sfpl.kernel'
print(x, ...)
S3 method for class 'sfpl.kNN'
print(x, ...)
S3 method for class 'sfpl.kernel'
summary(object, ...)
S3 method for class 'sfpl.kNN'
summary(object, ...)

Arguments

x Output of the sfpl.kernel.fit or sfpl.kNN.fit functions (i.e. an object of
the class sfpl.kernel or sfpl.kNN).

... Further arguments.

object Output of the sfpl.kernel.fit or sfpl.kNN.fit functions (i.e. an object of
the class sfpl.kernel or sfpl.kNN).

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i.e. the value obtained with lambda.opt, vn.opt
and h.opt/k.opt

print.summary.sfplsim 69

• Minimum value of the penalised least-squares function. That is, the value obtained using
beta.est and lambda.opt.

• The penalty function used.

• The criterion used to select the tuning parameter, the penalisation parameter and vn.

• The optimal value of vn.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfpl.kernel.fit and sfpl.kNN.fit.

print.summary.sfplsim Summarise information from SFPLSIM estimation

Description

summary and print functions for sfplsim.kNN.fit and sfplsim.kernel.fit.

Usage

S3 method for class 'sfplsim.kernel'
print(x, ...)
S3 method for class 'sfplsim.kNN'
print(x, ...)
S3 method for class 'sfplsim.kernel'
summary(object, ...)
S3 method for class 'sfplsim.kNN'
summary(object, ...)

Arguments

x Output of the sfplsim.kernel.fit or sfplsim.kNN.fit functions (i.e. an
object of the class sfplsim.kernel or sfplsim.kNN).

... Further arguments.

object Output of the sfplsim.kernel.fit or sfplsim.kNN.fit functions (i.e. an
object of the class sfplsim.kernel or sfplsim.kNN).

70 projec

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• Coefficients of θ̂ in the B-spline basis (theta.est): a vector of length(order.Bspline+nknot.theta).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i.e. the value obtained with lambda.opt, vn.opt
and h.opt/k.opt

• Minimum value of the penalised least-squares function. That is, the value obtained using
theta.est, beta.est and lambda.opt.

• The penalty function used.

• The criterion used to select the tuning parameter, the penalisation parameter and vn.

• The optimal value of vn.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfplsim.kernel.fit and sfplsim.kNN.fit.

projec Inner product computation

Description

Computes the inner product between each curve collected in data and a particular curve θ.

Usage

projec(data, theta, order.Bspline = 3, nknot.theta = 3, range.grid = NULL, nknot = NULL)

projec 71

Arguments

data Matrix containing functional data collected by row

theta Vector containing the coefficients of θ in a B-spline basis, so that length(theta)=order.Bspline+nknot.theta

order.Bspline Order of the B-spline basis functions for the B-spline representation of θ. This
is the number of coefficients in each piecewise polynomial segment. The default
is 3.

nknot.theta Number of regularly spaced interior knots of the B-spline basis. The default is
3.

range.grid Vector of length 2 containing the range of the discretisation of the functional
data. If range.grid=NULL, then range.grid=c(1,p) is considered, where p is
the discretisation size of data (i.e. ncol(data)).

nknot Number of regularly spaced interior knots for the B-spline representation of the
functional data. The default value is (p - order.Bspline - 1)%/%2.

Value

A matrix containing the inner products.

Note

The construction of this code is based on that by Frederic Ferraty, which is available on his website
https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also semimetric.projec.

Examples

data("Tecator")
names(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra

#length(theta)=6=order.Bspline+nknot.theta
projec(X,theta=c(1,0,0,1,1,-1),nknot.theta=3,nknot=20,range.grid=c(850,1050))

https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

72 PVS.fit

PVS.fit Impact point selection with PVS

Description

This function implements the Partitioning Variable Selection (PVS) algorithm. This algorithm is
specifically designed for estimating multivarite linear models, where the scalar covariates are de-
rived from the discretisation of a curve.

PVS is a two-stage procedure that selects the impact points of the discretised curve and estimates
the model. The algorithm employs a penalised least-squares regularisation procedure. Additionally,
it utilises an objective criterion (criterion) to determine the initial number of covariates in the
reduced model (w.opt) of the first stage, and the penalisation parameter (lambda.opt).

Usage

PVS.fit(z, y, train.1 = NULL, train.2 = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20), range.grid = NULL,
criterion = "GCV", penalty = "grSCAD", max.iter = 1000)

Arguments

z Matrix containing the observations of the functional covariate collected by row
(linear component).

y Vector containing the scalar response.
train.1 Positions of the data that are used as the training sample in the 1st step. The

default setting is train.1<-1:ceiling(n/2).
train.2 Positions of the data that are used as the training sample in the 2nd step. The

default setting is train.2<-(ceiling(n/2)+1):n.
lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in

which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.
nlambda Number of values in the sequence from which lambda.opt is selected. The

default is 100.
vn Positive integer or vector of positive integers indicating the number of groups of

consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

PVS.fit 73

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

criterion The criterion used to select the tuning and regularisation parameters: wn.opt
and lambda.opt (also vn.opt if needed). Options include "GCV", "BIC", "AIC",
or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

Details

The sparse linear model with covariates coming from the discretization of a curve is given by the
expression

Yi =

pn∑
j=1

β0jζi(tj) + εi, (i = 1, . . . , n)

where

• Yi is a real random response and ζi is assumed to be a random curve defined on some interval
[a, b], which is observed at the points a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn
)⊤ is a vector of unknown real coefficients.

• εi denotes the random error.

In this model, it is assumed that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn
)} are part

of the model. Therefore, the relevant variables (the impact points of the curve ζ on the response)
must be selected, and the model estimated.

In this function, this model is fitted using the PVS. The PVS is a two-steps procedure. So we
divide the sample into two independent subsamples, each asymptotically half the size of the original
sample (n1 ∼ n2 ∼ n/2). One subsample is used in the first stage of the method, and the other in
the second stage.The subsamples are defined as follows:

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.
Note that these two subsamples are specified to the program through the arguments train.1 and
train.2. The superscript s, where s = 1,2, indicates the stage of the method in which the sample,
function, variable, or parameter is involved.

74 PVS.fit

To explain the algorithm, we assume that the number pn of linear covariates can be expressed as
follows: pn = qnwn, with qn and wn being integers.

1. First step. A reduced model is considered, discarding many linear covariates. The penalised
least-squares procedure is applied to the reduced model using only the subsample E1. Specif-
ically:

• Consider a subset of the initial pn linear covariates, containing only wn equally spaced
discretized observations of ζ covering the interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z. The size (cardinality) of this subset is provided to the program in the argument wn
(which contains a sequence of eligible sizes).

• Consider the following reduced model involving only the wn linear covariates from R1
n:

R1
n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + ε1i .

The penalised least-squares variable selection procedure is applied to the reduced model
using the function lm.pels.fit, which requires the remaining arguments (for details, see
the documentation of the function lm.pels.fit). The estimates obtained are the outputs
of the first step of the algorithm.

2. Second step. The variables selected in the first step, along with the variables in their neighbor-
hood, are included. Then the penalised least-squares procedure is carried out again considering
only the subsample E2. Specifically:

• Consider a new set of variables :

R2
n =

⋃
{k,β̂1

0k ̸=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn = ♯(R2
n), we can rename the variables in R2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t

2
rn)

}
,

• Consider the following model, which involves only the linear covariates belonging to R2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) + ε2i .

The penalised least-squares variable selection procedure is applied to this model using
lm.pels.fit.

The outputs of the second step are the estimates of the model. For further details on this algorithm,
see Aneiros and Vieu (2014).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

PVS.fit 75

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i. e. estimate of β0 when the optimal tuning parameters w.opt and lambda.opt
are used).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

w.opt Selected size for R1
n.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt and lambda.opt.

beta2 Estimate of β2
0 for each value of the sequence wn.

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the entire set of pn) used to build R2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the entire set of pn) used to build R1
n for each value

of the sequence wn.

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G. and Vieu, P. (2014) Variable selection in infinite-dimensional problems. Statistics &
Probability Letters, 94, 12–20, doi:10.1016/j.spl.2014.06.025.

https://doi.org/10.1016/j.spl.2014.06.025

76 PVS.kernel.fit

See Also

See also lm.pels.fit.

Examples

data(Sugar)

y<-Sugar$ash
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- PVS.fit(z=z.sug[train,], y=y.sug[train],train.1=1:108,train.2=109:216,

lambda.min.h=0.2,criterion="BIC", max.iter=5000)
proc.time()-ptm

fit
names(fit)

PVS.kernel.fit Impact point selection with PVS and kernel estimation

Description

This function computes the partitioning variable selection (PVS) algorithm for multi-functional
partial linear models (MFPLM).

PVS is a two-stage procedure that selects the impact points of the discretised curve and estimates
the model. The algorithm employs a penalised least-squares regularisation procedure, integrated
with kernel estimation with Nadaraya-Watson weights. Additionally, it utilises an objective crite-
rion (criterion) to select the number of covariates in the reduced model (w.opt), the bandwidth
(h.opt) and the penalisation parameter (lambda.opt).

Usage

PVS.kernel.fit(x, z, y, train.1 = NULL, train.2 = NULL, semimetric = "deriv",
q = NULL, min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10,
range.grid = NULL, kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,

PVS.kernel.fit 77

lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20), criterion = "GCV",
penalty = "grSCAD", max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate (functional non-
parametric component), collected by row.

z Matrix containing the observations of the functional covariate that is discretised
(linear component), collected by row.

y Vector containing the scalar response.

train.1 Positions of the data that are used as the training sample in the 1st step. The
default setting is train.1<-1:ceiling(n/2).

train.2 Positions of the data that are used as the training sample in the 2nd step. The
default setting is train.2<-(ceiling(n/2)+1):n.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i.e. the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

78 PVS.kernel.fit

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

criterion The criterion used to select the tuning and regularisation parameters: wn.opt,
lambda.opt and h.opt (also vn.opt if needed). Options include "GCV", "BIC",
"AIC", or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

Details

The multi-functional partial linear model (MFPLM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) +m (Xi) + εi, (i = 1, . . . , n),

where:

• Yi is a real random response and Xi denotes a random element belonging to some semi-metric
space H. The second functional predictor ζi is assumed to be a curve defined on some interval
[a, b], observed at the points a ≤ t1 < · · · < tpn

≤ b.

• β0 = (β01, . . . , β0pn
)⊤ is a vector of unknown real coefficients and m(·) represents a smooth

unknown real-valued link function.

• εi denotes the random error.

In the MFPLM, it is assumed that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn
)} are

part of the model. Therefore, the relevant variables in the linear component (the impact points of
the curve ζ on the response) must be selected, and the model estimated.

In this function, the MFPLM is fitted using the PVS procedure, a two-step algorithm. For this,
we divide the sample into two two independent subsamples (asymptotically of the same size n1 ∼

PVS.kernel.fit 79

n2 ∼ n/2). One subsample is used in the first stage of the method, and the other in the second
stage.The subsamples are defined as follows:

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.
Note that these two subsamples are specified to the program through the arguments train.1 and
train.2. The superscript s, where s = 1,2, indicates the stage of the method in which the sample,
function, variable, or parameter is involved.

To explain the algorithm, let’s assume that the number pn of linear covariates can be expressed as
follows: pn = qnwn with qn and wn being integers.

1. First step. A reduced model is considered, discarding many linear covariates. The penalised
least-squares procedure is applied to the reduced model using only the subsample E1. Specif-
ically:

• Consider a subset of the initial pn linear covariates containing only wn equally spaced
discretised observations of ζ covering the interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z. The size (cardinality) of this subset is provided to the program through the argument
wn, which contains the sequence of eligible sizes.

• Consider the following reduced model involving only the wn linear covariates from R1
n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) +m1 (Xi) + ε1i .

The penalised least-squares variable selection procedure, with kernel estimation, is ap-
plied to the reduced model using the function sfpl.kernel.fit, which requires the re-
maining arguments (for details, see the documentation of the function sfpl.kernel.fit).
The estimates obtained after that are the outputs of the first step of the algorithm.

2. Second step. The variables selected in the first step, along with those in their neighborhood,
are included. Then the penalised least-squares procedure, combined with kernel estimation, is
carried out again, considering only the subsample E2. Specifically:

• Consider a new set of variables:

R2
n =

⋃
{k,β̂1

0k ̸=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn = ♯(R2
n), we can rename the variables in R2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t

2
rn)

}
,

• Consider the following model, which involves only the linear covariates belonging to R2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) +m2 (Xi) + ε2i .

The penalised least-squares variable selection procedure, with kernel estimation, is ap-
plied to this model using sfpl.kernel.fit.

80 PVS.kernel.fit

The outputs of the second step are the estimates of the MFPLM. For further details on this algorithm,
see Aneiros and Vieu (2015).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
vn.opt and h.opt are used).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth (when w.opt is considered).

w.opt Selected size for R1
n.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, vn.opt
and h.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

h2 Selected bandwidth in the second step of the algorithm for each value of the
sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the entire set of pn) used to construct R2
n for each

value of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

h1 Selected bandwidth in the first step of the algorithm for each value of the se-
quence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

PVS.kernel.fit 81

index01 Indexes of the covariates (in the entire set of pn) used to construct R1
n for each

value of the sequence wn.
index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each

value of the sequence wn.
...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., and Vieu, P. (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671, doi:10.1007/s0018001505688.

See Also

See also sfpl.kernel.fit, predict.PVS.kernel and plot.PVS.kernel.

Alternative method PVS.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- PVS.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35, nknot=20,
criterion="BIC", max.iter=5000)

proc.time()-ptm

fit
names(fit)

https://doi.org/10.1007/s00180-015-0568-8

82 PVS.kNN.fit

PVS.kNN.fit Impact point selection with PVS and kNN estimation

Description

This function computes the partitioning variable selection (PVS) algorithm for multi-functional
partial linear models (MFPLM).

PVS is a two-stage procedure that selects the impact points of the discretised curve and estimates
the model. The algorithm employs a penalised least-squares regularisation procedure, integrated
with kNN estimation using Nadaraya-Watson weights. Additionally, it utilises an objective crite-
rion (criterion) to select the number of covariates in the reduced model (w.opt), the number of
neighbours (k.opt) and the penalisation parameter (lambda.opt).

Usage

PVS.kNN.fit(x, z, y, train.1 = NULL, train.2 = NULL, semimetric = "deriv",
q = NULL, knearest = NULL, min.knn = 2, max.knn = NULL, step = NULL,
range.grid = NULL, kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20), criterion = "GCV",
penalty = "grSCAD", max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate (functional non-
parametric component), collected by row.

z Matrix containing the observations of the functional covariate that is discretised
(linear component), collected by row.

y Vector containing the scalar response.

train.1 Positions of the data that are used as the training sample in the 1st step. The
default setting is train.1<-1:ceiling(n/2).

train.2 Positions of the data that are used as the training sample in the 2nd step. The
default setting is train.2<-(ceiling(n/2)+1):n.

semimetric Semi-metric function. Currently, only "deriv" and "pca" are implemented. By
default semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

PVS.kNN.fit 83

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i.e. the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.
nlambda Positive integer indicating the number of values in the sequence from which

lambda.opt is selected. The default is 100.
vn Positive integer or vector of positive integers indicating the number of groups of

consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

wn A vector of positive integers indicating the eligible number of covariates in the
reduced model. For more information, refer to the section Details. The default
is c(10,15,20).

criterion The criterion used to select the tuning and regularisation parameters: wn.opt,
lambda.opt and k.opt (also vn.opt if needed). Options include "GCV", "BIC",
"AIC", or "k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

84 PVS.kNN.fit

Details

The multi-functional partial linear model (MFPLM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) +m (Xi) + εi, (i = 1, . . . , n),

where:

• Yi is a real random response and Xi denotes a random element belonging to some semi-metric
space H. The second functional predictor ζi is assumed to be a curve defined on some interval
[a, b], observed at the points a ≤ t1 < · · · < tpn

≤ b.

• β0 = (β01, . . . , β0pn
)⊤ is a vector of unknown real coefficients and m(·) represents a smooth

unknown real-valued link function.

• εi denotes the random error.

In the MFPLM, it is assumed that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn
)} are

part of the model. Therefore, the relevant variables in the linear component (the impact points of
the curve ζ on the response) must be selected, and the model estimated.

In this function, the MFPLM is fitted using the PVS procedure, a two-step algorithm. For this,
we divide the sample into two two independent subsamples (asymptotically of the same size n1 ∼
n2 ∼ n/2). One subsample is used in the first stage of the method, and the other in the second
stage.The subsamples are defined as follows:

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified to the program through the arguments train.1 and
train.2. The superscript s, where s = 1,2, indicates the stage of the method in which the sample,
function, variable, or parameter is involved.

To explain the algorithm, let’s assume that the number pn of linear covariates can be expressed as
follows: pn = qnwn with qn and wn being integers.

1. First step. A reduced model is considered, discarding many linear covariates. The penalised
least-squares procedure is applied to the reduced model using only the subsample E1. Specif-
ically:

• Consider a subset of the initial pn linear covariates containing only wn equally spaced
discretised observations of ζ covering the interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z. The size (cardinality) of this subset is provided to the program through the argument
wn, which contains the sequence of eligible sizes.

• Consider the following reduced model involving only the wn linear covariates from R1
n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) +m1 (Xi) + ε1i .

PVS.kNN.fit 85

The penalised least-squares variable selection procedure, with kNN estimation, is applied
to the reduced model using the function sfpl.kNN.fit, which requires the remaining
arguments (for details, see the documentation of the function sfpl.kNN.fit). The esti-
mates obtained after that are the outputs of the first step of the algorithm.

2. Second step. The variables selected in the first step, along with those in their neighborhood,
are included. Then the penalised least-squares procedure, combined with kNN estimation, is
carried out again, considering only the subsample E2. Specifically:

• Consider a new set of variables:

R2
n =

⋃
{k,β̂1

0k ̸=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn = ♯(R2
n), we can rename the variables in R2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t

2
rn)

}
,

• Consider the following model, which involves only the linear covariates belonging to R2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) +m2 (Xi) + ε2i .

The penalised least-squares variable selection procedure, with kNN estimation, is applied
to this model using sfpl.kNN.fit.

The outputs of the second step are the estimates of the MFPLM. For further details on this algorithm,
see Aneiros and Vieu (2015).

Remark: If the condition pn = wnqn is not met (then pn/wn is not an integer), the function
considers variable qn = qn,k values k = 1, . . . , wn. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
vn.opt and k.opt are used).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours (when w.opt is considered).

w.opt Selected initial number of covariates in the reduced model.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

86 PVS.kNN.fit

IC Value of the criterion function considered to select w.opt, lambda.opt, vn.opt
and k.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

knn2 Selected number of neighbours in the second step of the algorithm for each value
of the sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the entire set of pn) used to build R2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

knn1 Selected number of neighbours in the first step of the algorithm for each value
of the sequence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the entire set of pn) used to build R1
n for each value

of the sequence wn.

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., and Vieu, P. (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671, doi:10.1007/s0018001505688.

See Also

See also sfpl.kNN.fit, predict.PVS.kNN and plot.PVS.kNN.

Alternative method PVS.kernel.fit.

https://doi.org/10.1007/s00180-015-0568-8

semimetric.projec 87

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- PVS.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,lambda.min.h=0.07,
lambda.min.l=0.07, nknot=20,criterion="BIC",
max.iter=5000)

proc.time()-ptm

fit
names(fit)

semimetric.projec Projection semi-metric computation

Description

Computes the projection semi-metric between each curve in data1 and each curve in data2, given
a functional index θ.

Usage

semimetric.projec(data1, data2, theta, order.Bspline = 3, nknot.theta = 3,
range.grid = NULL, nknot = NULL)

Arguments

data1 Matrix containing functional data collected by row.

data2 Matrix containing functional data collected by row.

88 semimetric.projec

theta Vector containing the coefficients of θ in a B-spline basis, so that length(theta)=order.Bspline+nknot.theta.

order.Bspline Order of the B-spline basis functions for the B-spline representation of θ. This
is the number of coefficients in each piecewise polynomial segment. The default
is 3.

nknot.theta Number of regularly spaced interior knots of the B-spline basis. The default is
3.

range.grid Vector of length 2 containing the range of the discretisation of the functional
data. If range.grid=NULL, then range.grid=c(1,p) is considered, where p is
the discretization size of data (i.e. ncol(data)).

nknot Number of regularly spaced interior knots for the B-spline representation of the
functional data. The default value is (p - order.Bspline - 1)%/%2.

Details

For x1, x2 ∈ H,, where H is a separable Hilbert space, the projection semi-metric in the direction
θ ∈ H is defined as

dθ(x1, x2) = |⟨θ, x1 − x2⟩|.

The function semimetric.projec computes this projection semi-metric using the B-spline rep-
resentation of the curves and θ. The dimension of the B-spline basis for θ is determined by
order.Bspline+nknot.theta.

Value

A matrix containing the projection semi-metrics for each pair of curves.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also projec.

Examples

data("Tecator")
names(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra

#length(theta)=6=order.Bspline+nknot.theta

https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

sfpl.kernel.fit 89

semimetric.projec(data1=X[1:5,], data2=X[5:10,],theta=c(1,0,0,1,1,-1),
nknot.theta=3,nknot=20,range.grid=c(850,1050))

sfpl.kernel.fit SFPLM regularised fit using kernel estimation

Description

This function fits a sparse semi-functional partial linear model (SFPLM). It employs a penalised
least-squares regularisation procedure, integrated with nonparametric kernel estimation using Nadaraya-
Watson weights.

The procedure utilises an objective criterion (criterion) to select both the bandwidth (h.opt) and
the regularisation parameter (lambda.opt).

Usage

sfpl.kernel.fit(x, z, y, semimetric = "deriv", q = NULL, min.q.h = 0.05,
max.q.h = 0.5, h.seq = NULL, num.h = 10, range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, lambda.seq = NULL,
vn = ncol(z), nfolds = 10, seed = 123, criterion = "GCV", penalty = "grSCAD",
max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate (functional non-
parametric component), collected by row.

z Matrix containing the observations of the scalar covariates (linear component),
collected by row.

y Vector containing the scalar response.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

90 sfpl.kernel.fit

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i.e. the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.
nlambda Positive integer indicating the number of values in the sequence from which

lambda.opt is selected. The default is 100.
lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,

then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

criterion The criterion used to select the tuning and regularisation parameter: h.opt and
lambda.opt (also vn.opt if needed). Options include "GCV", "BIC", "AIC", or
"k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

Details

The sparse semi-functional partial linear model (SFPLM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipn
β0pn

+m(Xi) + εi, i = 1, . . . , n,

sfpl.kernel.fit 91

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates, and Xi is a functional
random covariate valued in a semi-metric space H. In this equation, β0 = (β01, . . . , β0pn

)⊤ and
m(·) represent a vector of unknown real parameters and an unknown smooth real-valued function,
respectively. Additionally, εi is the random error.

In this function, the SFPLM is fitted using a penalised least-squares approach. The approach in-
volves transforming the SFPLM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn)
the effect of the functional covariate Xi using functional nonparametric regression (for details, see
Ferraty and Vieu, 2006). This transformation is achieved using kernel estimation with Nadaraya-
Watson weights.

An approximate linear model is then obtained:

Ỹ ≈ Z̃β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising

Q (β) =
1

2

(
Ỹ − Z̃β

)⊤ (
Ỹ − Z̃β

)
+ n

pn∑
j=1

Pλjn
(|βj |) , (1)

where β = (β1, . . . , βpn)
⊤, Pλjn

(·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the number of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and h (in the kernel estimation) are selected
using the objective criterion specified in the argument criterion.

Finally, after estimating β0 by minimising (1), we address the estimation of the nonlinear function
m(·). For this, we again employ the kernel procedure with Nadaraya-Watson weights to smooth the
partial residuals Yi − Z⊤

i β̂.

For further details on the estimation procedure of the sparse SFPLM, see Aneiros et al. (2015).

Remark: It should be noted that if we set lambda.seq to 0, we can obtain the non-penalised
estimation of the model, i.e. the OLS estimation. Using lambda.seq with a value ̸= 0 is advisable
when suspecting the presence of irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est Estimate of β0 when the optimal tuning parameters lambda.opt, h.opt and
vn.opt are used.

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth.

lambda.opt Selected value of lambda.

IC Value of the criterion function considered to select lambda.opt, h.opt and
vn.opt.

92 sfpl.kernel.fit

h.min.opt.max.mopt

h.opt=h.min.opt.max.mopt[2] (used by beta.est) was seeked between h.min.opt.max.mopt[1]
and h.min.opt.max.mopt[3].

vn.opt Selected value of vn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., Ferraty, F., Vieu, P. (2015) Variable selection in partial linear regression with functional
covariate. Statistics, 49, 1322–1347, doi:10.1080/02331888.2014.998675.

Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis. Springer Series in Statis-
tics, New York.

See Also

See also predict.sfpl.kernel and plot.sfpl.kernel.

Alternative method sfpl.kNN.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SFPLM fit.
ptm=proc.time()
fit<-sfpl.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],q=2,

max.q.h=0.35, lambda.min.l=0.01,
max.iter=5000, criterion="BIC", nknot=20)

proc.time()-ptm

#Results
fit
names(fit)

https://doi.org/10.1080/02331888.2014.998675

sfpl.kNN.fit 93

sfpl.kNN.fit SFPLM regularised fit using kNN estimation

Description

This function fits a sparse semi-functional partial linear model (SFPLM). It employs a penalised
least-squares regularisation procedure, integrated with nonparametric kNN estimation using Nadaraya-
Watson weights.

The procedure utilises an objective criterion (criterion) to select both the bandwidth (h.opt) and
the regularisation parameter (lambda.opt).

Usage

sfpl.kNN.fit(x, z, y, semimetric = "deriv", q = NULL, knearest = NULL,
min.knn = 2, max.knn = NULL, step = NULL, range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, lambda.seq = NULL,
vn = ncol(z), nfolds = 10, seed = 123, criterion = "GCV", penalty = "grSCAD",
max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate (functional non-
parametric component), collected by row.

z Matrix containing the observations of the scalar covariates (linear component),
collected by row.

y Vector containing the scalar response.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

94 sfpl.kNN.fit

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i.e. the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.
nlambda Positive integer indicating the number of values in the sequence from which

lambda.opt is selected. The default is 100.
lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,

then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

criterion The criterion used to select the tuning and regularisation parameter: k.opt and
lambda.opt (also vn.opt if needed). Options include "GCV", "BIC", "AIC", or
"k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

Details

The sparse semi-functional partial linear model (SFPLM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipn
β0pn

+m(Xi) + εi, i = 1, . . . , n,

sfpl.kNN.fit 95

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates, and Xi is a functional
random covariate valued in a semi-metric space H. In this equation, β0 = (β01, . . . , β0pn

)⊤ and
m(·) represent a vector of unknown real parameters and an unknown smooth real-valued function,
respectively. Additionally, εi is the random error.

In this function, the SFPLM is fitted using a penalised least-squares approach. The approach in-
volves transforming the SFPLM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn)
the effect of the functional covariate Xi using functional nonparametric regression (for details, see
Ferraty and Vieu, 2006). This transformation is achieved using kNN estimation with Nadaraya-
Watson weights.

An approximate linear model is then obtained:

Ỹ ≈ Z̃β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising

Q (β) =
1

2

(
Ỹ − Z̃β

)⊤ (
Ỹ − Z̃β

)
+ n

pn∑
j=1

Pλjn
(|βj |) , (1)

where β = (β1, . . . , βpn
)⊤, Pλjn

(·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the number of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and k (in the kNN estimation) are selected
using the objective criterion specified in the argument criterion.

Finally, after estimating β0 by minimising (1), we address the estimation of the nonlinear function
m(·). For this, we again employ the kNN procedure with Nadaraya-Watson weights to smooth the
partial residuals Yi − Z⊤

i β̂.

For further details on the estimation procedure of the sparse SFPLM, see Aneiros et al. (2015).

Remark: It should be noted that if we set lambda.seq to 0, we can obtain the non-penalised
estimation of the model, i.e. the OLS estimation. Using lambda.seq with a value ̸= 0 is advisable
when suspecting the presence of irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est Estimate of β0 when the optimal tuning parameters lambda.opt, k.opt and
vn.opt are used.

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours.

lambda.opt Selected value of lambda.

IC Value of the criterion function considered to select both lambda.opt, h.opt and
vn.opt.

vn.opt Selected value of vn.

...

96 sfplsim.kernel.fit

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., Ferraty, F., Vieu, P. (2015) Variable selection in partial linear regression with functional
covariate. Statistics, 49, 1322–1347, doi:10.1080/02331888.2014.998675.

See Also

See also predict.sfpl.kNN and plot.sfpl.kNN.

Alternative method sfpl.kernel.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SFPLM fit.
ptm=proc.time()
fit<-sfpl.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],q=2, max.knn=20,

lambda.min.l=0.01, criterion="BIC",
range.grid=c(850,1050), nknot=20, max.iter=5000)

proc.time()-ptm

#Results
fit
names(fit)

sfplsim.kernel.fit SFPLSIM regularised fit using kernel estimation

Description

This function fits a sparse semi-functional partial linear single-index (SFPLSIM). It employs a
penalised least-squares regularisation procedure, integrated with nonparametric kernel estimation
using Nadaraya-Watson weights.

The function uses B-spline expansions to represent curves and eligible functional indexes. It also
utilises an objective criterion (criterion) to select both the bandwidth (h.opt) and the regularisa-
tion parameter (lambda.opt).

https://doi.org/10.1080/02331888.2014.998675

sfplsim.kernel.fit 97

Usage

sfplsim.kernel.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10,
range.grid = NULL, kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
lambda.seq = NULL, vn = ncol(z), nfolds = 10, seed = 123, criterion = "GCV",
penalty = "grSCAD", max.iter = 1000, n.core = NULL)

Arguments

x Matrix containing the observations of the functional covariate (functional single-
index component), collected by row.

z Matrix containing the observations of the scalar covariates (linear component),
collected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

min.q.h Minimum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the lower endpoint of
the range from which the bandwidth is selected. The default is 0.05.

max.q.h Maximum quantile order of the distances between curves, which are computed
using the projection semi-metric. This value determines the upper endpoint of
the range from which the bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwidths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

98 sfplsim.kernel.fit

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,
then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

criterion The criterion used to select the tuning and regularisation parameter: h.opt and
lambda.opt (also vn.opt if needed). Options include "GCV", "BIC", "AIC", or
"k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

n.core Number of CPU cores designated for parallel execution. The default is n.core<-availableCores(omit=1).

Details

The sparse semi-functional partial linear single-index model (SFPLSIM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipn
β0pn

+ r(⟨θ0, Xi⟩) + εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn
are real random covariates and Xi is a functional

random covariate valued in a separable Hilbert space H with inner product ⟨·, ·⟩. In this equation,
β0 = (β01, . . . , β0pn)

⊤, θ0 ∈ H and r(·) are a vector of unknown real parameters, an unknown
functional direction and an unknown smooth real-valued function, respectively. In addition, εi is
the random error.

The sparse SFPLSIM is fitted using the penalised least-squares approach. The first step is to trans-
form the SSFPLSIM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn) the ef-
fect of the functional covariate Xi using functional single-index regression. This transformation is
achieved using nonparametric kernel estimation (see, for details, the documentation of the function
fsim.kernel.fit).

sfplsim.kernel.fit 99

An approximate linear model is then obtained:

Ỹθ0 ≈ Z̃θ0β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising over the pair (β, θ)

Q (β, θ) =
1

2

(
Ỹθ − Z̃θβ

)⊤ (
Ỹθ − Z̃θβ

)
+ n

pn∑
j=1

Pλjn
(|βj |) , (1)

where β = (β1, . . . , βpn
)⊤, Pλjn

(·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and h (in the kernel estimation) are selected
using the objetive criterion specified in the argument criterion.

In addition, the function uses a B-spline representation to construct a set Θn of eligible functional
indexes θ. The dimension of the B-spline basis is order.Bspline+nknot.theta and the set of
eligible coefficients is obtained by calibrating (to ensure the identifiability of the model) the set
of initial coefficients given in seed.coeff. The larger this set, the greater the size of Θn. ue to
the intensive computation required by our approach, a balance between the size of Θn and the
performance of the estimator is necessary. For that, Ait-Saidi et al. (2008) suggested considering
order.Bspline=3 and seed.coeff=c(-1,0,1). For details on the construction of Θn see Novo et
al. (2019).

Finally, after estimating β0 and θ0 by minimising (1), we proceed to estimate the nonlinear function
rθ0(·) ≡ r (⟨θ0, ·⟩). For this purporse, we again apply the kernel procedure with Nadaraya-Watson
weights to smooth the partial residuals Yi − Z⊤

i β̂.

For further details on the estimation procedure of the SSFPLSIM, see Novo et al. (2021).

Remark: It should be noted that if we set lambda.seq to 0, we can obtain the non-penalised
estimation of the model, i.e. the OLS estimation. Using lambda.seq with a value ̸= 0 is advisable
when suspecting the presence of irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est Estimate of β0 when the optimal tuning parameters lambda.opt, h.opt and
vn.opt are used.

theta.est Coefficients of θ̂ in the B-spline basis (when the optimal tuning parameters
lambda.opt, h.opt and vn.opt are used): a vector of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth.

lambda.opt Selected value of the penalisation parameter λ.

IC Value of the criterion function considered to select lambda.opt, h.opt and
vn.opt.

100 sfplsim.kernel.fit

Q.opt Minimum value of the penalized criterion used to estimate β0 and θ0. That is,
the value obtained using theta.est and beta.est.

Q Vector of dimension equal to the cardinal of Θn, containing the values of the
penalized criterion for each functional index in Θn.

m.opt Index of θ̂ in the set Θn.
lambda.min.opt.max.mopt

A grid of values in [lambda.min.opt.max.mopt[1], lambda.min.opt.max.mopt[3]]
is considered to seek for the lambda.opt (lambda.opt=lambda.min.opt.max.mopt[2]).

lambda.min.opt.max.m

A grid of values in [lambda.min.opt.max.m[m,1], lambda.min.opt.max.m[m,3]]
is considered to seek for the optimal λ (lambda.min.opt.max.m[m,2]) used by
the optimal β for each θ in Θn.

h.min.opt.max.mopt

h.opt=h.min.opt.max.mopt[2] (used by theta.est and beta.est) was seeked
between h.min.opt.max.mopt[1] and h.min.opt.max.mopt[3].

h.min.opt.max.m

For each θ in Θn, the optimal h (h.min.opt.max.m[m,2]) used by the optimal β
for this θ was seeked between h.min.opt.max.m[m,1] and h.min.opt.max.m[m,3].

h.seq.opt Sequence of eligible values for h considered to seek for h.opt.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

vn.opt Selected value of vn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P. (2008) Cross-validated estimations in the single-
functional index model. Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single-index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are
mixture of functional and high-dimensional variables. TEST, 30, 481–504, doi:10.1007/s11749-
02000728w.

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data
analysis. Statistics and Probability Letters, 171, 109028, doi:10.1016/j.spl.2020.109028.

See Also

See also fsim.kernel.fit, predict.sfplsim.kernel and plot.sfplsim.kernel

Alternative procedure sfplsim.kNN.fit.

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1016/j.spl.2020.109028

sfplsim.kNN.fit 101

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SSFPLSIM fit. Convergence errors for some theta are obtained.
ptm=proc.time()
fit<-sfplsim.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],

max.q.h=0.35,lambda.min.l=0.01,
max.iter=5000, nknot.theta=4,criterion="BIC",nknot=20)

proc.time()-ptm

#Results
fit
names(fit)

sfplsim.kNN.fit SFPLSIM regularised fit using kNN estimation

Description

This function fits a sparse semi-functional partial linear single-index (SFPLSIM). It employs a
penalised least-squares regularisation procedure, integrated with nonparametric kNN estimation
using Nadaraya-Watson weights.

The function uses B-spline expansions to represent curves and eligible functional indexes. It also
utilises an objective criterion (criterion) to select both the number of neighbours (k.opt) and the
regularisation parameter (lambda.opt).

Usage

sfplsim.kNN.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, knearest = NULL, min.knn = 2, max.knn = NULL, step = NULL,
range.grid = NULL, kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1, nlambda = 100,
lambda.seq = NULL, vn = ncol(z), nfolds = 10, seed = 123, criterion = "GCV",
penalty = "grSCAD", max.iter = 1000, n.core = NULL)

Arguments

x Matrix containing the observations of the functional covariate (functional single-
index component), collected by row.

102 sfplsim.kNN.fit

z Matrix containing the observations of the scalar covariates (linear component),
collected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of regularly spaced interior knots in the
B-spline expansion of θ0. The default is 3.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn A positive integer that represents the minimum value in the sequence for select-
ing the number of nearest neighbours k.opt. This value should be less than the
sample size. The default is 2.

max.knn A positive integer that represents the maximum value in the sequence for se-
lecting number of nearest neighbours k.opt. This value should be less than the
sample size. The default is max.knn <- n%/%5.

step A positive integer used to construct the sequence of k-nearest neighbours as fol-
lows: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,....
The default value for step is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretisation).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
discretisation size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Currently, only Epanechnikov kernel ("quad")
is available.

nknot Positive integer indicating the number of interior knots for the B-spline expan-
sion of the functional covariate. The default value is (p - order.Bspline -
1)%/%2.

lambda.min The smallest value for lambda (i. e., the lower endpoint of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the sample size is larger than factor.pn times the number
of linear covariates and lambda.min.h otherwise.

lambda.min.h The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is smaller than factor.pn times the number of linear covariates. The
default is 0.05.

lambda.min.l The lower endpoint of the sequence in which lambda.opt is selected if the sam-
ple size is larger than factor.pn times the number of linear covariates. The
default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values in the sequence from which
lambda.opt is selected. The default is 100.

sfplsim.kNN.fit 103

lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,
then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
resulting in the individual penalization of each scalar covariate.

nfolds Number of cross-validation folds (used when criterion="k-fold-CV"). De-
fault is 10.

seed You may set the seed for the random number generator to ensure reproducible
results (applicable when criterion="k-fold-CV" is used). The default seed
value is 123.

criterion The criterion used to select the tuning and regularisation parameter: h.opt and
lambda.opt (also vn.opt if needed). Options include "GCV", "BIC", "AIC", or
"k-fold-CV". The default setting is "GCV".

penalty The penalty function applied in the penalised least-squares procedure. Currently,
only "grLasso" and "grSCAD" are implemented. The default is "grSCAD".

max.iter Maximum number of iterations allowed across the entire path. The default value
is 1000.

n.core Number of CPU cores designated for parallel execution. The default is n.core<-availableCores(omit=1).

Details

The sparse semi-functional partial linear single-index model (SFPLSIM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipn
β0pn

+ r(⟨θ0, Xi⟩) + εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn
are real random covariates and Xi is a functional

random covariate valued in a separable Hilbert space H with inner product ⟨·, ·⟩. In this equation,
β0 = (β01, . . . , β0pn)

⊤, θ0 ∈ H and r(·) are a vector of unknown real parameters, an unknown
functional direction and an unknown smooth real-valued function, respectively. In addition, εi is
the random error.

The sparse SFPLSIM is fitted using the penalised least-squares approach. The first step is to trans-
form the SSFPLSIM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn) the ef-
fect of the functional covariate Xi using functional single-index regression. This transformation is
achieved using nonparametric kNN estimation (see, for details, the documentation of the function
fsim.kNN.fit).

An approximate linear model is then obtained:

Ỹθ0 ≈ Z̃θ0β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising over the pair (β, θ)

Q (β, θ) =
1

2

(
Ỹθ − Z̃θβ

)⊤ (
Ỹθ − Z̃θβ

)
+ n

pn∑
j=1

Pλjn
(|βj |) , (1)

where β = (β1, . . . , βpn
)⊤, Pλjn

(·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for

104 sfplsim.kNN.fit

each sample, we consider λj = λσ̂β0,j,OLS
, where β0,j,OLS denotes the OLS estimate of β0,j and

σ̂β0,j,OLS
is the estimated standard deviation. Both λ and k (in the kNN estimation) are selected

using the objetive criterion specified in the argument criterion.

In addition, the function uses a B-spline representation to construct a set Θn of eligible functional
indexes θ. The dimension of the B-spline basis is order.Bspline+nknot.theta and the set of
eligible coefficients is obtained by calibrating (to ensure the identifiability of the model) the set
of initial coefficients given in seed.coeff. The larger this set, the greater the size of Θn. ue to
the intensive computation required by our approach, a balance between the size of Θn and the
performance of the estimator is necessary. For that, Ait-Saidi et al. (2008) suggested considering
order.Bspline=3 and seed.coeff=c(-1,0,1). For details on the construction of Θn see Novo et
al. (2019).

Finally, after estimating β0 and θ0 by minimising (1), we proceed to estimate the nonlinear function
rθ0(·) ≡ r (⟨θ0, ·⟩). For this purporse, we again apply the kNN procedure with Nadaraya-Watson
weights to smooth the partial residuals Yi − Z⊤

i β̂.

For further details on the estimation procedure of the sparse SFPLSIM, see Novo et al. (2021).

Remark: It should be noted that if we set lambda.seq to 0, we can obtain the non-penalised
estimation of the model, i.e. the OLS estimation. Using lambda.seq with a value ̸= 0 is advisable
when suspecting the presence of irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values.

beta.est β̂ (i.e. the estimate of β0 when the optimal tuning parameters lambda.opt,
k.opt and vn.opt are used).

theta.est Coefficients of θ̂ in the B-spline basis (when the optimal tuning parameters
lambda.opt, k.opt and vn.opt) are used): a vector of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours.

lambda.opt Selected value of the penalisation parameter λ.

IC Value of the criterion function considered to select lambda.opt, k.opt and
vn.opt.

Q.opt Minimum value of the penalized criterion used to estimate β0 and θ0. That is,
the value obtained using theta.est and beta.est.

Q Vector of dimension equal to the cardinal of Θn, containing the values of the
penalized criterion for each functional index in Θn.

m.opt Index of θ̂ in the set Θn.
lambda.min.opt.max.mopt

A grid of values in [lambda.min.opt.max.mopt[1], lambda.min.opt.max.mopt[3]]
is considered to seek for the lambda.opt (lambda.opt=lambda.min.opt.max.mopt[2]).

sfplsim.kNN.fit 105

lambda.min.opt.max.m

A grid of values in [lambda.min.opt.max.m[m,1], lambda.min.opt.max.m[m,3]]
is considered to seek for the optimal λ (lambda.min.opt.max.m[m,2]) used by
the optimal β for each θ in Θn.

knn.min.opt.max.mopt

k.opt=knn.min.opt.max.mopt[2] (used by theta.est and beta.est) was
seeked between knn.min.opt.max.mopt[1] and knn.min.opt.max.mopt[3]
(no necessarly the step was 1).

knn.min.opt.max.m

For each θ in Θn, the optimal k (knn.min.opt.max.m[m,2]) used by the opti-
mal β for this θ was seeked between knn.min.opt.max.m[m,1] and knn.min.opt.max.m[m,3]
(no necessarly the step was 1).

knearest Sequence of eligible values for k considered to seek for k.opt.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

vn.opt Selected value of vn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P., (2008) Cross-validated estimations in the single-
functional index model. Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single-index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are
mixture of functional and high-dimensional variables. TEST, 30, 481–504, doi:10.1007/s11749-
02000728w.

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data
analysis. Statistics and Probability Letters, 171, 109028, doi:10.1016/j.spl.2020.109028

See Also

See also fsim.kNN.fit, predict.sfplsim.kNN and plot.sfplsim.kNN

Alternative procedure sfplsim.kernel.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1016/j.spl.2020.109028

106 Sugar

z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SSFPLSIM fit. Convergence errors for some theta are obtained.
ptm=proc.time()
fit<-sfplsim.kNN.fit(y=y[train],x=X[train,], z=z.com[train,], max.knn=20,

lambda.min.l=0.01, factor.pn=2, nknot.theta=4,
criterion="BIC",range.grid=c(850,1050),
nknot=20, max.iter=5000)

proc.time()-ptm

#Results
fit
names(fit)

Sugar Sugar data

Description

Ash content and absorbance spectra at two different excitation wavelengths of 268 sugar sam-
ples. Detailed information about this dataset can be found at https://ucphchemometrics.com/
datasets/.

Usage

data(Sugar)

Format

A list containing:

• ash: A vector with the ash content.

• wave.290: A matrix containing the absorbance spectra observed at 571 equally spaced wave-
lengths in the range of 275-560nm, at an excitation wavelengths of 290nm.

• wave.240: A matrix containing the absorbance spectra observed at 571 equally spaced wave-
lengths in the range of 275-560nm, at an excitation wavelengths of 240nm.

References

Aneiros, G., and Vieu, P. (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671, doi:10.1007/s0018001505688.

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

https://ucphchemometrics.com/datasets/
https://ucphchemometrics.com/datasets/
https://doi.org/10.1007/s00180-015-0568-8
https://doi.org/10.1111/anzs.12355

Tecator 107

Examples

data(Sugar)
names(Sugar)
Sugar$ash
dim(Sugar$wave.290)
dim(Sugar$wave.240)

Tecator Tecator data

Description

Fat, protein, and moisture content, along with absorbance spectra (including the first and second
derivatives), of 215 meat samples. A detailed description of the data can be found at http://lib.
stat.cmu.edu/datasets/tecator.

Usage

data(Tecator)

Format

A list containing:

• fat: A vector with the fat content.

• protein: A vector with the protein content.

• moisture: A vector with the moisture content.

• absor.spectra: A matrix containing the near-infrared absorbance spectra observed at 100
equally spaced wavelengths in the range of 850-1050nm.

• absor.spectra1: Fist derivative of the absorbance spectra (computed using B-spline repre-
sentation of the curves).

• absor.spectra2: Second derivative of the absorbance spectra (computed using B-spline rep-
resentation of the curves).

References

Ferraty, F. and Vieu, P. (2006) Nonparametric functional data analysis, Springer Series in Statistics,
New York.

Examples

data(Tecator)
names(Tecator)
Tecator$fat
Tecator$protein
Tecator$moisture
dim(Tecator$absor.spectra)

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator

Index

∗ datasets
Sugar, 106
Tecator, 107

FASSMR.kernel.fit, 3, 4, 13, 36, 38, 50, 62
FASSMR.kNN.fit, 3, 8, 9, 38, 41, 44, 50, 62
fsemipar (fsemipar-package), 2
fsemipar-package, 2
fsemipar.internal, 14
fsim.kernel.fit, 3, 15, 21, 23, 27, 30, 50,

100
fsim.kernel.fit.optim, 3, 18, 23, 27, 30
fsim.kernel.test, 3, 18, 21, 32
fsim.kNN.fit, 3, 18, 21, 24, 30, 32, 50, 105
fsim.kNN.fit.optim, 3, 21, 27, 27, 32
fsim.kNN.test, 3, 23, 27, 30

IASSMR.kernel.fit, 3, 8, 33, 44, 50, 53
IASSMR.kNN.fit, 3, 13, 38, 39, 50, 53

lm.pels.fit, 3, 45, 50, 55, 65, 74, 76

plot.classes, 47
plot.FASSMR.kernel, 8
plot.FASSMR.kernel (plot.classes), 47
plot.FASSMR.kNN, 13
plot.FASSMR.kNN (plot.classes), 47
plot.fsim.kernel, 18, 21
plot.fsim.kernel (plot.classes), 47
plot.fsim.kNN, 27, 30
plot.fsim.kNN (plot.classes), 47
plot.IASSMR.kernel, 38
plot.IASSMR.kernel (plot.classes), 47
plot.IASSMR.kNN, 44
plot.IASSMR.kNN (plot.classes), 47
plot.lm.pels (plot.classes), 47
plot.PVS (plot.classes), 47
plot.PVS.kernel, 81
plot.PVS.kNN, 86
plot.sfpl.kernel, 92

plot.sfpl.kernel (plot.classes), 47
plot.sfpl.kNN, 96
plot.sfpl.kNN (plot.classes), 47
plot.sfplsim.kernel, 100
plot.sfplsim.kernel (plot.classes), 47
plot.sfplsim.kNN, 105
plot.sfplsim.kNN (plot.classes), 47
predict.FASSMR.kernel, 8
predict.FASSMR.kernel

(predict.sfplsim.FASSMR), 60
predict.FASSMR.kNN, 13
predict.FASSMR.kNN

(predict.sfplsim.FASSMR), 60
predict.fsim, 50
predict.fsim.kernel, 18, 21, 23
predict.fsim.kNN, 27, 30, 32
predict.IASSMR, 51
predict.IASSMR.kernel, 38
predict.IASSMR.kNN, 44
predict.lm, 54
predict.mfplm.PVS, 56
predict.PVS (predict.lm), 54
predict.PVS.kernel, 81
predict.PVS.kernel (predict.mfplm.PVS),

56
predict.PVS.kNN, 86
predict.PVS.kNN (predict.mfplm.PVS), 56
predict.sfpl, 58
predict.sfpl.kernel, 58, 92
predict.sfpl.kNN, 58, 96
predict.sfplsim.FASSMR, 60
predict.sfplsim.kernel, 100
predict.sfplsim.kernel

(predict.sfplsim.FASSMR), 60
predict.sfplsim.kNN, 105
predict.sfplsim.kNN

(predict.sfplsim.FASSMR), 60
print.FASSMR.kernel

(print.summary.mfplsim), 66

108

INDEX 109

print.FASSMR.kNN
(print.summary.mfplsim), 66

print.fsim.kernel (print.summary.fsim),
63

print.fsim.kNN (print.summary.fsim), 63
print.IASSMR.kernel

(print.summary.mfplsim), 66
print.IASSMR.kNN

(print.summary.mfplsim), 66
print.lm.pels (print.summary.lm), 64
print.PVS (print.summary.lm), 64
print.PVS.kernel (print.summary.mfpl),

65
print.PVS.kNN (print.summary.mfpl), 65
print.sfpl.kernel (print.summary.sfpl),

68
print.sfpl.kNN (print.summary.sfpl), 68
print.sfplsim.kernel

(print.summary.sfplsim), 69
print.sfplsim.kNN

(print.summary.sfplsim), 69
print.summary.fsim, 63
print.summary.lm, 64
print.summary.mfpl, 65
print.summary.mfplsim, 66
print.summary.sfpl, 68
print.summary.sfplsim, 69
projec, 3, 70, 88
PVS.fit, 3, 47, 50, 55, 65, 72
PVS.kernel.fit, 3, 50, 58, 76, 86
PVS.kNN.fit, 3, 50, 58, 81, 82

semimetric.projec, 3, 25, 71, 87
sfpl.kernel.fit, 3, 50, 58, 60, 79, 81, 89, 96
sfpl.kNN.fit, 3, 50, 58, 60, 85, 86, 92, 93
sfplsim.kernel.fit, 3, 7, 8, 36, 38, 50, 53,

62, 96, 105
sfplsim.kNN.fit, 3, 12, 13, 42, 44, 50, 53,

62, 100, 101
Sugar, 3, 106
summary.FASSMR.kernel

(print.summary.mfplsim), 66
summary.FASSMR.kNN

(print.summary.mfplsim), 66
summary.fsim.kernel

(print.summary.fsim), 63
summary.fsim.kNN (print.summary.fsim),

63

summary.IASSMR.kernel
(print.summary.mfplsim), 66

summary.IASSMR.kNN
(print.summary.mfplsim), 66

summary.lm.pels (print.summary.lm), 64
summary.PVS (print.summary.lm), 64
summary.PVS.kernel

(print.summary.mfpl), 65
summary.PVS.kNN (print.summary.mfpl), 65
summary.sfpl.kernel

(print.summary.sfpl), 68
summary.sfpl.kNN (print.summary.sfpl),

68
summary.sfplsim.kernel

(print.summary.sfplsim), 69
summary.sfplsim.kNN

(print.summary.sfplsim), 69

Tecator, 3, 107

	fsemipar-package
	FASSMR.kernel.fit
	FASSMR.kNN.fit
	fsemipar.internal
	fsim.kernel.fit
	fsim.kernel.fit.optim
	fsim.kernel.test
	fsim.kNN.fit
	fsim.kNN.fit.optim
	fsim.kNN.test
	IASSMR.kernel.fit
	IASSMR.kNN.fit
	lm.pels.fit
	plot.classes
	predict.fsim
	predict.IASSMR
	predict.lm
	predict.mfplm.PVS
	predict.sfpl
	predict.sfplsim.FASSMR
	print.summary.fsim
	print.summary.lm
	print.summary.mfpl
	print.summary.mfplsim
	print.summary.sfpl
	print.summary.sfplsim
	projec
	PVS.fit
	PVS.kernel.fit
	PVS.kNN.fit
	semimetric.projec
	sfpl.kernel.fit
	sfpl.kNN.fit
	sfplsim.kernel.fit
	sfplsim.kNN.fit
	Sugar
	Tecator
	Index

