Package: maxstablePCA 0.1.1

Felix Reinbott

maxstablePCA: Apply a PCA Like Procedure Suited for Multivariate Extreme Value Distributions

Dimension reduction for multivariate data of extreme events with a PCA like procedure as described in Reinbott, Janßen, (2024), <doi:10.48550/arXiv.2408.10650>. Tools for necessary transformations of the data are provided.

Authors:Felix Reinbott [aut, cre]

maxstablePCA_0.1.1.tar.gz
maxstablePCA_0.1.1.tar.gz(r-4.5-noble)maxstablePCA_0.1.1.tar.gz(r-4.4-noble)
maxstablePCA_0.1.1.tgz(r-4.4-emscripten)maxstablePCA_0.1.1.tgz(r-4.3-emscripten)
maxstablePCA.pdf |maxstablePCA.html
maxstablePCA/json (API)

# Install 'maxstablePCA' in R:
install.packages('maxstablePCA', repos = 'https://cloud.r-project.org')

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 184 downloads 7 exports 1 dependencies

Last updated 7 months agofrom:857a81872c. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 07 2025
R-4.5-linux-x86_64OKMar 07 2025
R-4.4-linux-x86_64OKMar 07 2025

Exports:compressmax_stable_prcompmaxmatmulreconstructtransform_orig_marginstransform_unitfrechettransform_unitpareto

Dependencies:nloptr

Citation

To cite package ‘maxstablePCA’ in publications use:

Reinbott F (2024). maxstablePCA: Apply a PCA Like Procedure Suited for Multivariate Extreme Value Distributions. R package version 0.1.1, https://CRAN.R-project.org/package=maxstablePCA.

Corresponding BibTeX entry:

  @Manual{,
    title = {maxstablePCA: Apply a PCA Like Procedure Suited for
      Multivariate Extreme Value Distributions},
    author = {Felix Reinbott},
    year = {2024},
    note = {R package version 0.1.1},
    url = {https://CRAN.R-project.org/package=maxstablePCA},
  }

Readme and manuals

maxstablePCA

A package for dimensionality reduction of multivariate extremes using the idea of PCA to obtain a resonable compact description of the data.

Main functionalities
  • Transform a dataset to standard margins to use well known ideas from extreme value theory
  • Perform a dimensionality reduction of a dataset to a fixed number of encoding variables. For further information about the theory of this consider looking at the references.
  • Evaluate the quality of this reconstruction.
  • Transform the data back to the distribution of the original dataset.
Examples on simulated and real world data

For a better feeling of what this algorithm does, please consider looking at the following repo, providing example data analyses and simulation studies https://github.com/FelixRb96/maxstablePCA_examples.

References