Package: amanpg 0.3.4
Zhong Zheng
amanpg: Alternating Manifold Proximal Gradient Method for Sparse PCA
Alternating Manifold Proximal Gradient Method for Sparse PCA uses the Alternating Manifold Proximal Gradient (AManPG) method to find sparse principal components from a data or covariance matrix. Provides a novel algorithm for solving the sparse principal component analysis problem which provides advantages over existing methods in terms of efficiency and convergence guarantees. Chen, S., Ma, S., Xue, L., & Zou, H. (2020) <doi:10.1287/ijoo.2019.0032>. Zou, H., Hastie, T., & Tibshirani, R. (2006) <doi:10.1198/106186006X113430>. Zou, H., & Xue, L. (2018) <doi:10.1109/JPROC.2018.2846588>.
Authors:
amanpg_0.3.4.tar.gz
amanpg_0.3.4.tar.gz(r-4.5-noble)amanpg_0.3.4.tar.gz(r-4.4-noble)
amanpg_0.3.4.tgz(r-4.4-emscripten)amanpg_0.3.4.tgz(r-4.3-emscripten)
amanpg.pdf |amanpg.html✨
amanpg/json (API)
# Install 'amanpg' in R: |
install.packages('amanpg', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:345b3cf6d1. Checks:OK: 1 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 09 2024 |
R-4.5-linux | WARNING | Dec 09 2024 |
Exports:normalizeprox.l1spca.amanpg
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Matrix Normalization | normalize |
Proximal L1 Mapping | prox.l1 |
Alternating Manifold Proximal Gradient algorithm for Sparse PCA | spca.amanpg |