Package: hytest 0.1.1

Carlos Alberto Cardozo Delgado

hytest: Hypothesis Testing Based on Neyman-Pearson Lemma and Likelihood Ratio Test

Error type I and Optimal critical values to test statistical hypothesis based on Neyman-Pearson Lemma and Likelihood ratio test based on random samples from several distributions. The families of distributions are Bernoulli, Exponential, Geometric, Inverse Normal, Normal, Gamma, Gumbel, Lognormal, Poisson, and Weibull. This package is an ideal resource to help with the teaching of Statistics. The main references for this package are Casella G. and Berger R. (2003,ISBN:0-534-24312-6 , "Statistical Inference. Second Edition", Duxbury Press) and Hogg, R., McKean, J., and Craig, A. (2019,ISBN:013468699, "Introduction to Mathematical Statistic. Eighth edition", Pearson).

Authors:Carlos Alberto Cardozo Delgado [aut, cre, cph]

hytest_0.1.1.tar.gz
hytest_0.1.1.tar.gz(r-4.5-noble)hytest_0.1.1.tar.gz(r-4.4-noble)
hytest_0.1.1.tgz(r-4.4-emscripten)hytest_0.1.1.tgz(r-4.3-emscripten)
hytest.pdf |hytest.html
hytest/json (API)

# Install 'hytest' in R:
install.packages('hytest', repos = 'https://cloud.r-project.org')

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 207 downloads 20 exports 8 dependencies

Last updated 7 months agofrom:fb6ae6e43c. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 09 2025
R-4.5-linuxOKMar 09 2025
R-4.4-linuxOKMar 09 2025

Exports:ber_c_optber_errorIexp_c_optexp_errorIgamma_c_optgamma_errorIgeom_c_optgeom_errorIgumbel_c_optgumbel_errorIinvnormal_c_optinvnormal_errorIlognorm_c_optlognorm_errorInorm_c_optnorm_errorIpois_c_optpois_errorIweibull_c_optweibull_errorI

Dependencies:gamlssgamlss.datagamlss.distlatticeMASSMatrixnlmesurvival

Citation

To cite package ‘hytest’ in publications use:

Cardozo Delgado C (2024). hytest: Hypothesis Testing Based on Neyman-Pearson Lemma and Likelihood Ratio Test. R package version 0.1.1, https://CRAN.R-project.org/package=hytest.

Corresponding BibTeX entry:

  @Manual{,
    title = {hytest: Hypothesis Testing Based on Neyman-Pearson Lemma
      and Likelihood Ratio Test},
    author = {Carlos Alberto {Cardozo Delgado}},
    year = {2024},
    note = {R package version 0.1.1},
    url = {https://CRAN.R-project.org/package=hytest},
  }

Readme and manuals

Help Manual

Help pageTopics
Critical Value Given a Nominal Error Type I Associated with a Bernoulli Distributionber_c_opt
Empirical Error Type I Associated with a Bernoulli Distributionber_errorI
Critical Value Given a Nominal Error Type I Associated with a Exponential Distributionexp_c_opt
Empirical Error Type I Associated with an Exponential Distributionexp_errorI
Critical Value Given a Nominal Error Type I Associated with a Gamma Distributiongamma_c_opt
Empirical Error Type I Associated with a Gamma Distributiongamma_errorI
Critical Value Given a Nominal Error Type I Associated with a Geometric Distributiongeom_c_opt
Empirical Error Type I Associated with a Geometric Distributiongeom_errorI
Critical Value Given a Nominal Error Type I Associated with a Gumbel Distributiongumbel_c_opt
Empirical Error Type I Associated with a Gumbel Distributiongumbel_errorI
Critical Value Given a Nominal Error Type I Associated with a Inverse Normal Distributioninvnormal_c_opt
Empirical Error Type I Associated with a Inverse Normal Distributioninvnormal_errorI
Critical Value Given a Nominal Error Type I Associated with a Log Normal Distributionlognorm_c_opt
Empirical Error Type I Associated with a Log Normal Distributionlognorm_errorI
Critical Value Given a Nominal Error Type I Associated with a Normal Distributionnorm_c_opt
Empirical Error Type I Associated with a Normal Distributionnorm_errorI
Critical Value Given a Nominal Error Type I Associated with a Poisson Distributionpois_c_opt
Empirical Error Type I Associated with a Poisson Distributionpois_errorI
Critical Value Given a Nominal Error Type I Associated with a Weibull Distributionweibull_c_opt
Empirical Error Type I Associated with a Weibull Distributionweibull_errorI