Package: scalablebayesm 0.2

Federico Bumbaca
scalablebayesm: Distributed Markov Chain Monte Carlo for Bayesian Inference in Marketing
Estimates unit-level and population-level parameters from a hierarchical model in marketing applications. The package includes: Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates. For more details, see Bumbaca, F. (Rico), Misra, S., & Rossi, P. E. (2020) <doi:10.1177/0022243720952410> "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models". Journal of Marketing Research, 57(6), 999-1018.
Authors:
scalablebayesm_0.2.tar.gz
scalablebayesm_0.2.tar.gz(r-4.5-noble)scalablebayesm_0.2.tar.gz(r-4.4-noble)
scalablebayesm_0.2.tgz(r-4.4-emscripten)scalablebayesm_0.2.tgz(r-4.3-emscripten)
scalablebayesm.pdf |scalablebayesm.html✨
scalablebayesm/json (API)
# Install 'scalablebayesm' in R: |
install.packages('scalablebayesm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 28 days agofrom:9b4927b7d9. Checks:2 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 25 2025 |
R-4.5-linux-x86_64 | OK | Feb 25 2025 |
Exports:combine_drawsdrawMixturedrawPosteriorParallelhellopartition_datarheteroLinearIndepMetroprheteroMnlIndepMetroprhierLinearDPParallelrhierLinearMixtureParallelrhierMnlDPParallelrhierMnlRwMixtureParallels_maxsample_data
Dependencies:bayesmRcppRcppArmadillo