Package: PPLasso 2.0
Wencan Zhu
PPLasso: Prognostic Predictive Lasso for Biomarker Selection
We provide new tools for the identification of prognostic and predictive biomarkers. For further details we refer the reader to the paper: Zhu et al. Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. BMC Bioinformatics. 2023 Jan 23;24(1):25.
Authors:
PPLasso_2.0.tar.gz
PPLasso_2.0.tar.gz(r-4.5-noble)PPLasso_2.0.tar.gz(r-4.4-noble)
PPLasso_2.0.tgz(r-4.4-emscripten)PPLasso_2.0.tgz(r-4.3-emscripten)
PPLasso.pdf |PPLasso.html✨
PPLasso/json (API)
# Install 'PPLasso' in R: |
install.packages('PPLasso', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:a80319ed8b. Checks:OK: 1 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-linux | WARNING | Nov 01 2024 |
Exports:Correction1VectCorrection2VectProgPredLassotoptop_thresh
Dependencies:abindassertthatbackportsbootbroomcarcarDataclicodetoolscolorspacecoopcorrplotcowplotcpp11cvCovEstdata.tableDerivdigestdoBydplyrfansifarverforeachFormulafuturefuture.applygenericsgenlassoggplot2ggpubrggrepelggsciggsignifglmnetglobalsgluegridExtragtableigraphisobanditeratorslabelinglatticelifecyclelistenvlme4magrittrMASSMatrixMatrixModelsmatrixStatsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivorigamiparallellypbkrtestpillarpkgconfigpolynompurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangRMTstatRSpectrarstatixscalesshapeSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Prognostic Predictive Lasso for Biomarker Selection | PPLasso-package PPLasso |
Correction on two vectors | Correction1Vect |
Correction on two vectors | Correction2Vect |
Identification of prognostic and predictive biomarkers | ProgPredLasso |
Thresholding to 0 | top |
Thresholding to a given threshold of the smallest values | top_thresh |