Package 'PPLasso'

Title: Prognostic Predictive Lasso for Biomarker Selection
Description: We provide new tools for the identification of prognostic and predictive biomarkers. For further details we refer the reader to the paper: Zhu et al. Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. BMC Bioinformatics. 2023 Jan 23;24(1):25.
Authors: Wencan Zhu [aut, cre], Celine Levy-Leduc [ctb], Nils Ternes [ctb]
Maintainer: Wencan Zhu <[email protected]>
License: GPL-2
Version: 2.0
Built: 2024-12-31 07:31:16 UTC
Source: CRAN

Help Index


Prognostic Predictive Lasso for Biomarker Selection

Description

We provide new tools for the identification of prognostic and predictive biomarkers. For further details we refer the reader to the paper: Zhu et al. Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. BMC Bioinformatics. 2023 Jan 23;24(1):25.

Details

The DESCRIPTION file:

Package: PPLasso
Type: Package
Title: Prognostic Predictive Lasso for Biomarker Selection
Version: 2.0
Date: 2023-02-26
Authors@R: c(person("Wencan", "Zhu", email = "[email protected]", role = c("aut", "cre")), person("Celine","Levy-Leduc", email="[email protected]", role = "ctb"), person("Nils", "Ternes", email="[email protected]", role = "ctb"))
Author: Wencan Zhu [aut, cre], Celine Levy-Leduc [ctb], Nils Ternes [ctb]
Maintainer: Wencan Zhu <[email protected]>
Description: We provide new tools for the identification of prognostic and predictive biomarkers. For further details we refer the reader to the paper: Zhu et al. Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. BMC Bioinformatics. 2023 Jan 23;24(1):25.
License: GPL-2
Imports: genlasso, ggplot2, cvCovEst, glmnet, MASS
VignetteBuilder: knitr
Suggests: knitr, rmarkdown
NeedsCompilation: no
Packaged: 2023-02-26 15:54:29 UTC; mmip
Depends: R (>= 3.5.0)
Repository: CRAN
Date/Publication: 2023-02-27 09:12:35 UTC
Config/pak/sysreqs: cmake libglpk-dev make libicu-dev libxml2-dev

Index of help topics:

Correction1Vect         Correction on two vectors
Correction2Vect         Correction on two vectors
PPLasso-package         Prognostic Predictive Lasso for Biomarker
                        Selection
ProgPredLasso           Identification of prognostic and predictive
                        biomarkers
top                     Thresholding to 0
top_thresh              Thresholding to a given threshold of the
                        smallest values

Further information is available in the following vignettes:

Vignettes WLasso package (source, pdf)

This package provide usufull tool for the identification of prognostics and predictive biomarkers.

Author(s)

Wencan Zhu [aut, cre], Celine Levy-Leduc [ctb], Nils Ternes [ctb]

Maintainer: Wencan Zhu <[email protected]>

References

W. Zhu, C. Levy-Leduc, N. Ternes. "A variable selection approach for highly correlated predictors in high-dimensional genomic data". (2020)


Correction on two vectors

Description

For the estimation of β\beta in Zhu et al. (2022), this function keeps only the M largest values coefficientss set the others to 0.

Usage

Correction1Vect(X, Y, te = NULL, vector, top_grill. = c(1:length(vector)), delta = 0.95)

Arguments

X

Design matrix

Y

Response vector

te

treatment effects

vector

The vector on which we performe the thresholding

top_grill.

grill of the thresholding

delta

parameter δ\delta in the thresholding

Value

This function returns the thresholded vector.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

Examples

vect_sample=sample(1:20,20)
X=t(sapply(c(1:10),FUN=function(x) rnorm(20)))
Y=rnorm(10)

Correction1Vect(X=X, Y=Y, vector=vect_sample)

## The function is currently defined as
function(X, Y, te=NULL, vector, top_grill.=c(1:length(vector)), delta=0.95){
  
  beta_interm <- sapply(top_grill., top, vect = vector)
  beta_te <- rbind(rep(te[1],length(top_grill.)), rep(te[2],length(top_grill.)), beta_interm)
  yhat <- as.matrix(X %*% beta_te)
  residuals <- sweep(yhat, 1, Y)
  mse_final_top <- colMeans(residuals^2)
  ratio_mse <- c()
  for (k in 1:(length(top_grill.) - 1)) {
    ratio_mse[k] <- round(mse_final_top[k + 1]/mse_final_top[k],6)
  }
  top_ratio <- min(which(ratio_mse >= delta))
  if (is.infinite(top_ratio)) {
    opt_final_top <- length(vector)
  }
  else {
    opt_final_top <- top_grill.[top_ratio]
  }
  
  return(round(top(vect = vector, thresh = opt_final_top), 6))
  
}

Correction on two vectors

Description

For the estimation of β~\tilde{\beta} in Zhu et al. (2022), this function keeps only the K1 largest values of prognostic biomarkers coefficients and the k2 largest value of the presictive biomarkers coefficients and set the others to the smallest value among the k1 (k2) largest of prognostic (predictive part).

Usage

Correction2Vect(X, Y, te=NULL, vector_prog, vector_pred, 
top_grill.=c(1:length(vector_prog)), delta=0.95, toZero=FALSE)

Arguments

X

Design matrix

Y

Response vector

te

treatment effects

vector_prog

Vector of prognostic biomarkers

vector_pred

Vector of predictive biomarkers

top_grill.

grill of the thresholding

delta

parameter δ\delta in the thresholding

toZero

should the threshold to 0 or not

Value

This function returns the thresholded vector.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

Examples

x1=sample(1:10,10)
x2=sample(1:10,10)

X=t(sapply(c(1:10),FUN=function(x) rnorm(20)))
Y=rnorm(10)

Correction2Vect(X=X, Y=Y, vector_prog=x1, vector_pred=x2)

## The function is currently defined as
function(X, Y, te=NULL, vector_prog, vector_pred, 
top_grill.=c(1:length(vector_prog)), delta=0.95, toZero=FALSE){
  
    if(toZero){
      matrix_top_fix <- sapply(top_grill., top, vect=vector_prog)
      matrix_top_opt <- sapply(top_grill., top, vect=vector_pred)
    } else {
      matrix_top_fix <- sapply(top_grill., top_thresh, vect=vector_prog)
      matrix_top_opt <- sapply(top_grill., top_thresh, vect=vector_pred)
    }
    
    
    opt_top_opt <- mse_fix <- c()
    for(j in 1:length(top_grill.)){
      fix_temp <- matrix_top_fix[,j]
      mse_temp <- c()
      yhat <- X%*%c(te, fix_temp, matrix_top_opt[,1])

      mse_temp[1] <- sum((Y-yhat)^2)
      for(m in 2:length(top_grill.)){
        opt_temp <- matrix_top_opt[,m]
        threshed_vect <- c(te, fix_temp, opt_temp)
        yhat <- X%*%threshed_vect
        mse_temp[m] <- sum((Y-yhat)^2)
        ratio_mse <- round(mse_temp[m]/mse_temp[m-1], 6)
        if(ratio_mse >= delta){
          opt_top_opt[j] <- top_grill.[m]
          mse_fix[j] <- mse_temp[m]
          break
        }
      }
      if(m==length(top_grill.)){
        opt_top_opt[j] <- top_grill.[m]
        mse_fix[j] <- mse_temp[m]
      }
      if(j==1){
        ratio_final <- 0
      } else {
        ratio_final <- mse_fix[j]/mse_fix[j-1]
      }
      if(ratio_final >= delta){
        opt_fix <- j
        opt_opt <- m
        break
      }
    }
    
    if(exists("opt_fix")==FALSE){
      opt_fix <- ncol(matrix_top_fix)
      opt_opt <- ncol(matrix_top_opt)
    }
    

    return(c(matrix_top_fix[,opt_fix], matrix_top_opt[,opt_opt]))

}

Identification of prognostic and predictive biomarkers

Description

The computes the regularization path of the Prognostic Predictive Lasso described in the paper Zhu et al. (2022) given in the references.

Usage

ProgPredLasso(X1, X2, Y=Y, cor_matrix=NULL, gamma=0.99, maxsteps=500, lambda='single')

Arguments

X1

Design matrix of patients characteristics with treatment 1

X2

Design matrix of patients characteristics with treatment 2

Y

Response variable

cor_matrix

Correlation matrix of biomarkers. If not specified, the function cvCovEst from package cvCovEst will be used to estimate this matrix.

gamma

Parameter γ\gamma defined in the paper Zhu et al. (2020) given in the references. Its default value is 0.99.

maxsteps

Integer specifying the maximum number of steps for the generalized Lasso algorithm. Its default value is 500.

lambda

Using single tuning parameter or both.

Value

Returns a list with the following components

lambda

different values of the parameter λ\lambda considered.

beta

matrix of the estimations of β\beta for all the λ\lambda considered.

beta.min

estimation of β\beta which minimize the MSE.

bic

BIC for all the λ\lambda considered.

mse

MSE for all the λ\lambda considered.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes


Thresholding to 0

Description

This function keeps only the K largest values of the vector and sets the others to 0.

Usage

top(vect, thresh)

Arguments

vect

vector to threshold

thresh

threshold

Value

This function returns the thresholded vector.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

Examples

x=sample(1:10,10)
thresh=3
top(x,thresh)

## The function is currently defined as
function(vect, thresh){
  sorted_vect <- sort(abs(vect),decreasing=TRUE)
  v<-sorted_vect[thresh]
  ifelse(abs(vect)>=v,vect,0)
}

Thresholding to a given threshold of the smallest values

Description

This function keeps only the K largest values of the vector and sets the others to the smallest value among the K largest.

Usage

top_thresh(vect,thresh)

Arguments

vect

vector to threshold

thresh

threshold

Value

This function returns the thresholded vector.

Author(s)

Wencan Zhu, Celine Levy-Leduc, Nils Ternes

Examples

x=sample(1:10,10)
thresh=3
top_thresh(x,thresh)

## The function is currently defined as
function (vect, thresh) 
{
    sorted_vect <- sort(abs(vect),decreasing=TRUE)
    v = sorted_vect[thresh]
    ifelse(abs(vect) >= v, vect, v)
  }