Package: Ohit 1.0.0

Hai-Tang Chiou

Ohit: OGA+HDIC+Trim and High-Dimensional Linear Regression Models

Ing and Lai (2011) <doi:10.5705/ss.2010.081> proposed a high-dimensional model selection procedure that comprises three steps: orthogonal greedy algorithm (OGA), high-dimensional information criterion (HDIC), and Trim. The first two steps, OGA and HDIC, are used to sequentially select input variables and determine stopping rules, respectively. The third step, Trim, is used to delete irrelevant variables remaining in the second step. This package aims at fitting a high-dimensional linear regression model via OGA+HDIC+Trim.

Authors:Hai-Tang Chiou, Ching-Kang Ing, Tze Leung Lai

Ohit_1.0.0.tar.gz
Ohit_1.0.0.tar.gz(r-4.5-noble)Ohit_1.0.0.tar.gz(r-4.4-noble)
Ohit_1.0.0.tgz(r-4.4-emscripten)Ohit_1.0.0.tgz(r-4.3-emscripten)
Ohit.pdf |Ohit.html
Ohit/json (API)

# Install 'Ohit' in R:
install.packages('Ohit', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 3 scripts 116 downloads 3 exports 0 dependencies

Last updated 7 years agofrom:50d8222c85. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-linuxOKNov 19 2024

Exports:OGAOhitpredict_Ohit

Dependencies: