Package: EMDANNhybrid 0.2.0
Pankaj Das
EMDANNhybrid: Empirical Mode Decomposition Based Artificial Neural Network Model
Application of empirical mode decomposition based artificial neural network model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=55&issue=1&article=013>; (ii) Das (2020) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=56&issue=2&article=002>.
Authors:
EMDANNhybrid_0.2.0.tar.gz
EMDANNhybrid_0.2.0.tar.gz(r-4.5-noble)EMDANNhybrid_0.2.0.tar.gz(r-4.4-noble)
EMDANNhybrid_0.2.0.tgz(r-4.4-emscripten)EMDANNhybrid_0.2.0.tgz(r-4.3-emscripten)
EMDANNhybrid.pdf |EMDANNhybrid.html✨
EMDANNhybrid/json (API)
# Install 'EMDANNhybrid' in R: |
install.packages('EMDANNhybrid', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:c9c4e17412. Checks:2 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 03 2025 |
R-4.5-linux | OK | Jan 03 2025 |
Exports:EMDANNhybrid
Dependencies:clicolorspacecurldotCall64EMDfansifarverfieldsforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestlocfitmagrittrmapsMASSMatrixmgcvmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalesspamtibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
New Ensemble Hybrid Machine Learning Model | EMDANNhybrid |