Package: MLCM 0.4.3
Guillermo Aguilar
MLCM: Maximum Likelihood Conjoint Measurement
Conjoint measurement is a psychophysical procedure in which stimulus pairs are presented that vary along 2 or more dimensions and the observer is required to compare the stimuli along one of them. This package contains functions to estimate the contribution of the n scales to the judgment by a maximum likelihood method under several hypotheses of how the perceptual dimensions interact. Reference: Knoblauch & Maloney (2012) "Modeling Psychophysical Data in R". <doi:10.1007/978-1-4614-4475-6>.
Authors:
MLCM_0.4.3.tar.gz
MLCM_0.4.3.tar.gz(r-4.5-noble)MLCM_0.4.3.tar.gz(r-4.4-noble)
MLCM_0.4.3.tgz(r-4.4-emscripten)MLCM_0.4.3.tgz(r-4.3-emscripten)
MLCM.pdf |MLCM.html✨
MLCM/json (API)
NEWS
# Install 'MLCM' in R: |
install.packages('MLCM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- BumpyGlossy - Conjoint Measurement Data for Bumpiness and Glossiness
- GlossyBumpy - Conjoint Measurement Data for Bumpiness and Glossiness
- Texture - Three-way Conjoint Measurement Data for Texture Regularity.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:0d68015cca. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 01 2024 |
R-4.5-linux | NOTE | Dec 01 2024 |
Exports:as.mlcm.dfbinom.diagnosticsboot.mlcmmake.widemake.wide.fullmlcmmlcm.defaultmlcm.formula
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Maximum Likelihood Conjoint Measurement | MLCM-package MLCM |
Analysis of Deviance for Maximum Likelihood Conjoint Measurement Model Fits | anova.mlcm |
Coerce data frame to mlcm.df | as.mlcm.df |
Diagnostics for Binary GLM | binom.diagnostics plot.mlcm.diag |
Resampling of an Estimated Conjoint Measurement Scale | boot.mlcm |
Conjoint Measurement Data for Bumpiness and Glossiness | BumpyGlossy GlossyBumpy |
Fitted Responses for a Conjoint Measurement Scale | fitted.mlcm |
Extract Log-Likelihood from mlcm Object | logLik.mlcm |
Create data frame for Fitting Conjoint Measurment Models by glm | make.wide make.wide.full |
Fit Conjoint Measurement Models by Maximum Likelihood | mlcm mlcm.default mlcm.formula print.mlcm |
Plot an mlcm Object | lines.mlcm plot.mlcm points.mlcm |
Create Conjoint Proportion Plot from mlcm.df Object | plot.mlcm.df |
Predict Method for MLCM Objects | predict.mlcm |
Summary Method for mlcm objects | print.summary.mlcm summary.mlcm |
Three-way Conjoint Measurement Data for Texture Regularity. | Texture |