Package: dsample 0.91.3.4

Chel Hee Lee

dsample: Discretization-Based Direct Random Sample Generation

Discretization-based random sampling algorithm that is useful for a complex model in high dimension is implemented. The normalizing constant of a target distribution is not needed. Posterior summaries are compared with those by 'OpenBUGS'. The method is described: Wang and Lee (2014) <doi:10.1016/j.csda.2013.06.011> and exercised in Lee (2009) <http://hdl.handle.net/1993/21352>.

Authors:Chel Hee Lee [aut, cre], Liqun Wang [aut]

dsample_0.91.3.4.tar.gz
dsample_0.91.3.4.tar.gz(r-4.5-noble)dsample_0.91.3.4.tar.gz(r-4.4-noble)
dsample_0.91.3.4.tgz(r-4.4-emscripten)dsample_0.91.3.4.tgz(r-4.3-emscripten)
dsample.pdf |dsample.html
dsample/json (API)

# Install 'dsample' in R:
install.packages('dsample', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 7 scripts 218 downloads 1 exports 2 dependencies

Last updated 2 years agofrom:abb162304e. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-linuxNOTENov 08 2024

Exports:dsample

Dependencies:MASSmnormt

example

Rendered fromexample.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2023-02-09
Started: 2023-02-09