Package: MLCOPULA 1.0.1

Rogelio Salinas Gutiérrez

MLCOPULA: Classification Models with Copula Functions

Provides several classifiers based on probabilistic models. These classifiers allow to model the dependence structure of continuous features through bivariate copula functions and graphical models, see Salinas-Gutiérrez et al. (2014) <doi:10.1007/s00180-013-0457-y>.

Authors:Rogelio Salinas Gutiérrez [aut, cre, cph], Angélica Hernández Quintero [aut, cph], Pedro Abraham Montoya Calzada [aut, cph], Carlos Alberto López Hernández [aut, cph], Juan Manuel Marquez Romero [aut, cph]

MLCOPULA_1.0.1.tar.gz
MLCOPULA_1.0.1.tar.gz(r-4.5-noble)MLCOPULA_1.0.1.tar.gz(r-4.4-noble)
MLCOPULA_1.0.1.tgz(r-4.4-emscripten)MLCOPULA_1.0.1.tgz(r-4.3-emscripten)
MLCOPULA.pdf |MLCOPULA.html
MLCOPULA/json (API)

# Install 'MLCOPULA' in R:
install.packages('MLCOPULA', repos = 'https://cloud.r-project.org')

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 480 downloads 3 exports 65 dependencies

Last updated 5 months agofrom:94b868dd9b. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 23 2025
R-4.5-linuxOKMar 23 2025
R-4.4-linuxOKMar 23 2025

Exports:classification_reportcopulaClassifiercopulaPredict

Dependencies:ADGofTestBHclicodetoolscolorspacecopulacpp11dotCall64evmixfansifarverfieldsforeachggplot2glueGRIDCOPULAgslgtableigraphisobanditeratorskde1dlabelinglatticelifecyclelimSolvelpSolvemagrittrmapsMASSMatrixmgcvmunsellmvtnormnlmenumDerivpcaPPpillarpkgconfigplyrpracmapsplinequadprogR6randtoolboxRColorBrewerRcppRcppEigenreshape2rlangrngWELLRsolnpscalesspamSparseMstablediststringistringrtibbletruncnormTSPutf8vctrsviridisLitewithr

Citation

To cite package ‘MLCOPULA’ in publications use:

Salinas Gutiérrez R, Hernández Quintero A, Montoya Calzada P, López Hernández C, Marquez Romero J (2024). MLCOPULA: Classification Models with Copula Functions. R package version 1.0.1, https://CRAN.R-project.org/package=MLCOPULA.

Corresponding BibTeX entry:

  @Manual{,
    title = {MLCOPULA: Classification Models with Copula Functions},
    author = {Rogelio {Salinas Gutiérrez} and Angélica {Hernández
      Quintero} and Pedro Abraham {Montoya Calzada} and Carlos Alberto
      {López Hernández} and Juan Manuel {Marquez Romero}},
    year = {2024},
    note = {R package version 1.0.1},
    url = {https://CRAN.R-project.org/package=MLCOPULA},
  }

Readme and manuals

MLCOPULA

This package implements 7 copulas for supervised classification: frank, gaussian, clayton, joe, gumbel, AMH and grid. The classification model is based on the Bayes theorem, similar to the naive Bayes classifier model, but does not assume that the features are independent.

The probability of a class given a set of characteristics (predictor variables) is:

$$P(A|x_1,..x_d) \alpha \prod_{i = 1}^{d}f_{X_i|A}(x_i)c(u_1,...,u_i)$$

where each $u_i = F_{X_i|A}(x_i)$ with $i = 1,2,..d$.

The copula density function $c(u_1,..u_i)$ is modeled by bivariate copula functions, using graphical models (trees and chains)

Copulas

For more details and visualization of the copulas, go to https://abrahammontoyacalzada.shinyapps.io/Copulas/

Frank copula:

$$C(u_1,u_2;\theta) = -\frac{1}{\theta} ln \left[ 1 + \frac{(e^{-\theta u_1} - 1) (e^{-\theta u_2} - 1) } {e^{-\theta} - 1} \right]$$

with $\theta \in (-\infty,\infty)/0$

This copula has no upper nor lower tail dependency.

Clayton copula:

$$C(u_1,u_2;\theta) = \left( u_1^{-\theta} + u_2^{-\theta} - 1 \right)^{-1/\theta}$$

with $\theta \in [-1,\infty)/0$

When $\theta \geq 0$ has lower tail dependence equal to $\lambda_L = 2^{-1/\theta}$

Gaussiana (Normal) copula $$C(u_1,u_2;\theta) = \Phi_G (\Phi^{-1} (u_1) , \Phi^{-1} (u_2) )$$

with $\theta \in (-1,1)$

This copula has no upper nor lower tail dependency.

Joe copula $$C(u_1,u_2) = 1 - \left[ (1 - u_1)^\theta + (1 - u_2)^\theta - (1 - u_1)^\theta (1 - u_2)^\theta \right ] ^ {1/\theta}$$

with $\theta \in [1,\infty)$

This copula has upper tail dependence equal to $\lambda_U = 2 - 2^{1/\theta}$

Gumbel copula

$$C(u_1,u_2) = exp \left[ - \left[ ( -ln(u_1) )^\theta + ( -ln(u_2) )^\theta \right]^{1/\theta} \right]$$

with $\theta \in [1,\infty)$

This copula has upper tail dependence equal to $\lambda_U = 2 - 2^{1/\theta}$

Ali–Mikhail–Haq copula

$$C(u_1,u_2) = \frac{u_1 u_2}{1 - \theta (1 - u_1)(1- u_2)}$$

with $\theta \in [-1,1)$

This copula has no upper nor lower tail dependency.

Example for iris data set

library(MLCOPULA)
X <- iris[,1:4]
y <- iris$Species
model <- copulaClassifier(X = X, y = y, copula = "frank",
                      distribution = "kernel", graph_model = "tree")
y_pred <- copulaPredict(X = X, model = model)
table(y,y_pred$class)
#Example 2
X <- iris[,1:4]
y <- iris$Species
model <- copulaClassifier(X = X, y = y, copula = c("frank","clayton"), 
                        distribution = "kernel", graph_model = "chain")
y_pred <- copulaPredict(X = X, model = model)
table(y,y_pred$class)

References

Salinas-Gutiérrez, R., Hernández-Aguirre, A., Villa-Diharce, E.R. (2014). Copula selection for graphical models in continuous Estimation of Distribution Algorithms. Computational Statistics, 29(3–4):685–713. https://doi.org/10.1007/s00180-013-0457-y