Package: corrRF 1.1.0

Elliot H. Young
corrRF: Clustered Random Forests for Optimal Prediction and Inference of Clustered Data
A clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.
Authors:
corrRF_1.1.0.tar.gz
corrRF_1.1.0.tar.gz(r-4.5-noble)corrRF_1.1.0.tar.gz(r-4.4-noble)
corrRF_1.1.0.tgz(r-4.4-emscripten)corrRF_1.1.0.tgz(r-4.3-emscripten)
corrRF.pdf |corrRF.html✨
corrRF/json (API)
# Install 'corrRF' in R: |
install.packages('corrRF', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 hours agofrom:5760791784. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 20 2025 |
R-4.5-linux-x86_64 | OK | Mar 20 2025 |
R-4.4-linux-x86_64 | OK | Mar 20 2025 |
Exports:crf
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Clustered random forest fitting | crf |
Predictions from a crf given newdata | predict.crf |
Summary for a crf fitted object | summary.crf |