Package: corrRF 1.1.0

Elliot H. Young

corrRF: Clustered Random Forests for Optimal Prediction and Inference of Clustered Data

A clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.

Authors:Elliot H. Young [aut, cre]

corrRF_1.1.0.tar.gz
corrRF_1.1.0.tar.gz(r-4.5-noble)corrRF_1.1.0.tar.gz(r-4.4-noble)
corrRF_1.1.0.tgz(r-4.4-emscripten)corrRF_1.1.0.tgz(r-4.3-emscripten)
corrRF.pdf |corrRF.html
corrRF/json (API)

# Install 'corrRF' in R:
install.packages('corrRF', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cpp

1.00 score 1 exports 2 dependencies

Last updated 3 hours agofrom:5760791784. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 20 2025
R-4.5-linux-x86_64OKMar 20 2025
R-4.4-linux-x86_64OKMar 20 2025

Exports:crf

Dependencies:Rcpprpart