Package: wskm 1.4.40

He Zhao

wskm: Weighted k-Means Clustering

Entropy weighted k-means (ewkm) by Liping Jing, Michael K. Ng and Joshua Zhexue Huang (2007) <doi:10.1109/TKDE.2007.1048> is a weighted subspace clustering algorithm that is well suited to very high dimensional data. Weights are calculated as the importance of a variable with regard to cluster membership. The two-level variable weighting clustering algorithm tw-k-means (twkm) by Xiaojun Chen, Xiaofei Xu, Joshua Zhexue Huang and Yunming Ye (2013) <doi:10.1109/TKDE.2011.262> introduces two types of weights, the weights on individual variables and the weights on variable groups, and they are calculated during the clustering process. The feature group weighted k-means (fgkm) by Xiaojun Chen, Yunminng Ye, Xiaofei Xu and Joshua Zhexue Huang (2012) <doi:10.1016/j.patcog.2011.06.004> extends this concept by grouping features and weighting the group in addition to weighting individual features.

Authors:Graham Williams [aut], Joshua Z Huang [aut], Xiaojun Chen [aut], Qiang Wang [aut], Longfei Xiao [aut], He Zhao [cre]

wskm_1.4.40.tar.gz
wskm_1.4.40.tar.gz(r-4.5-noble)wskm_1.4.40.tar.gz(r-4.4-noble)
wskm_1.4.40.tgz(r-4.4-emscripten)wskm_1.4.40.tgz(r-4.3-emscripten)
wskm.pdf |wskm.html
wskm/json (API)

# Install 'wskm' in R:
install.packages('wskm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/simonyansenzhao/wskm/issues

Datasets:
  • fgkm.sample - Sample dataset to illustrate the fgkm algorithm.
  • twkm.sample - Sample dataset to test the twkm algorithm.

1.36 score 1 stars 23 scripts 377 downloads 3 exports 22 dependencies

Last updated 5 years agofrom:881bfb4787. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linux-x86_64OKNov 23 2024

Exports:ewkmfgkmtwkm

Dependencies:classclusterdeldirDEoptimRdiptestflexmixfpcinterpjpegkernlablatticelatticeExtraMASSmclustmodeltoolsnnetpngprabclusRColorBrewerRcppRcppEigenrobustbase