Package: LPGraph 2.1

Kaijun Wang

LPGraph: Nonparametric Smoothing of Laplacian Graph Spectra

A nonparametric method to approximate Laplacian graph spectra of a network with ordered vertices. This provides a computationally efficient algorithm for obtaining an accurate and smooth estimate of the graph Laplacian basis. The approximation results can then be used for tasks like change point detection, k-sample testing, and so on. The primary reference is Mukhopadhyay, S. and Wang, K. (2018, Technical Report).

Authors:Subhadeep Mukhopadhyay, Kaijun Wang

LPGraph_2.1.tar.gz
LPGraph_2.1.tar.gz(r-4.5-noble)LPGraph_2.1.tar.gz(r-4.4-noble)
LPGraph_2.1.tgz(r-4.4-emscripten)LPGraph_2.1.tgz(r-4.3-emscripten)
LPGraph.pdf |LPGraph.html
LPGraph/json (API)

# Install 'LPGraph' in R:
install.packages('LPGraph', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.78 score 2 packages 174 downloads 5 exports 61 dependencies

Last updated 5 years agofrom:4eb555270d. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-linuxOKNov 17 2024

Exports:LaplacianLP.basisLP.struct.testLPSpectralwt.mean

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigPMApurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr