Package: onlineCOV 1.3

Jun Li

onlineCOV: Online Change Point Detection in High-Dimensional Covariance Structure

Implement a new stopping rule to detect anomaly in the covariance structure of high-dimensional online data. The detection procedure can be applied to Gaussian or non-Gaussian data with a large number of components. Moreover, it allows both spatial and temporal dependence in data. The dependence can be estimated by a data-driven procedure. The level of threshold in the stopping rule can be determined at a pre-selected average run length. More detail can be seen in Li, L. and Li, J. (2020) "Online Change-Point Detection in High-Dimensional Covariance Structure with Application to Dynamic Networks." <arxiv:1911.07762>.

Authors:Lingjun Li and Jun Li

onlineCOV_1.3.tar.gz
onlineCOV_1.3.tar.gz(r-4.5-noble)onlineCOV_1.3.tar.gz(r-4.4-noble)
onlineCOV_1.3.tgz(r-4.4-emscripten)onlineCOV_1.3.tgz(r-4.3-emscripten)
onlineCOV.pdf |onlineCOV.html
onlineCOV/json (API)

# Install 'onlineCOV' in R:
install.packages('onlineCOV', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 85 downloads 2 exports 0 dependencies

Last updated 5 years agofrom:aa8590e84a. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-linux-x86_64OKOct 31 2024

Exports:nuisance.eststopping.rule

Dependencies: