Package: mgwrsar 1.1

Ghislain Geniaux

mgwrsar: GWR, Mixed GWR and Multiscale GWR with Spatial Autocorrelation

Functions for computing (Mixed and Multiscale) Geographically Weighted Regression with spatial autocorrelation, Geniaux and Martinetti (2017) <doi:10.1016/j.regsciurbeco.2017.04.001>.

Authors:Ghislain Geniaux [aut, cre], Davide Martinetti [aut], César Martinez [aut]

mgwrsar_1.1.tar.gz
mgwrsar_1.1.tar.gz(r-4.5-noble)mgwrsar_1.1.tar.gz(r-4.4-noble)
mgwrsar_1.1.tgz(r-4.4-emscripten)mgwrsar_1.1.tgz(r-4.3-emscripten)
mgwrsar.pdf |mgwrsar.html
mgwrsar/json (API)
NEWS

# Install 'mgwrsar' in R:
install.packages('mgwrsar', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • mydata - Mydata is a simulated data set of a mgwrsar model
  • mydatasf - Mydataf is a Simple Feature object with real estate data in south of France.

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cpp

4.08 score 7 stars 34 scripts 364 downloads 22 exports 147 dependencies

Last updated 6 hours agofrom:96043ff5a4. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 20 2025
R-4.5-linux-x86_64OKFeb 20 2025

Exports:coeffind_TPgolden_search_bandwidthINST_Cint_premskernel_matWMGWRSARmgwrsar_bootstrap_testmgwrsar_bootstrap_test_allmultiscale_gwrnormWPhWY_Cplot_effectpredictProj_CQRcpp2_Cresidualssimu_multiscaleSl_Csummarysummary_Matrixtds_mgwr

Dependencies:base64encBHbrewbslibcachemcaretclassclassIntcliclockcodetoolscolorspacecpp11crosstalkdata.tableDBIdiagramdigestdoParalleldplyre1071evaluatefansifarverfastmapfontawesomeforeachFormulafsfuturefuture.applygenericsgeojsonsfgeometriesggplot2globalsgluegowergridExtragtablehardhathighrhtmltoolshtmlwidgetshttpuvinumipredisobanditeratorsjquerylibjsonifyjsonliteKernSmoothknitrlabelinglaterlatticelavalazyevalleafemleafletleaflet.providersleafpoplibcoinlifecyclelistenvlubridatemagrittrmapviewMASSMatrixmboostmemoisemgcvmicrobenchmarkmimeModelMetricsmunsellmvtnormnabornlmennetnnlsnumDerivparallellypartykitpillarpkgconfigplyrpngpROCprodlimprogressrpromisesproxypurrrquadprogR6rapidjsonrrappdirsrasterRColorBrewerRcppRcppEigenrecipesreshape2rlangrmarkdownrpartRSpectras2sasssatellitescalesservrsfsfheadersshapeSKATSMUTspsparsevctrsSPAtestSQUAREMstabsstringistringrsurvivalsvglitesystemfontsterratibbletidyrtidyselecttimechangetimeDatetinytextzdbunitsutf8uuidvctrsviridisLitewithrwkxfunyaml

Estimating GWR and Mixed GWR Models with mgwrsar package: An Introduction with House Price Data

Rendered fromIntro_french_data.html.asisusingR.rsp::asison Feb 20 2025.

Last update: 2025-02-20
Started: 2025-02-20

GWR and MGWR with Space-Time Kernels

Rendered fromGWR-with-Space-Time-Kernels.html.asisusingR.rsp::asison Feb 20 2025.

Last update: 2025-02-20
Started: 2025-02-20

GWR and Mixed GWR with spatial autocorrelation

Rendered fromGWR-and-Mixed-GWR-with-spatial-autocorrelation.html.asisusingR.rsp::asison Feb 20 2025.

Last update: 2025-02-20
Started: 2025-02-20

Multiscale GWR using top down scale approaches

Rendered fromMultiscale-GWR-using-top-down-scale-approach.html.asisusingR.rsp::asison Feb 20 2025.

Last update: 2025-02-20
Started: 2025-02-20

Speeding up GWR like models with mgwrsar package using Target Points, rough gaussian kernel and parallelisation

Rendered fromSpeeding_up_GWR_like_models.html.asisusingR.rsp::asison Feb 20 2025.

Last update: 2025-02-20
Started: 2025-02-20

Readme and manuals

Help Manual

Help pageTopics
atds_gwr Top-Down Scaling approach of GWRatds_gwr
coef for mgwrsar modelcoef,mgwrsar-method
Search of a suitable set of target points. find_TP is a wrapper function that identifies a set of target points based on spatial smoothed OLS residuals.find_TP
fitted for mgwrsar modelfitted,mgwrsar-method
golden_search_bandwidth to be documentedgolden_search_bandwidth
kernel_matW A function that returns a sparse weight matrix based computed with a specified kernel (gauss,bisq,tcub,epane,rectangle,triangle) considering coordinates provides in S and a given bandwidth. If NN<nrow(S) only NN firts neighbours are considered. If Type!='GD' then S should have additional columns and several kernels and bandwidths should be be specified by the user.kernel_matW
Estimation of linear and local linear model with spatial autocorrelation model (mgwrsar).MGWRSAR
A bootstrap test for Betas for mgwrsar class model.mgwrsar_bootstrap_test
A bootstrap test for testing nullity of all Betas for mgwrsar class model,mgwrsar_bootstrap_test_all
Class of mgwrsar Model.mgwrsar-class
modc is a set of models to correct approximation of hat matrix tracemodc
multiscale_gwr This function adapts the multiscale Geographically Weighted Regression (GWR) methodology proposed by Fotheringam et al. in 2017, employing a backward fitting procedure within the MGWRSAR subroutines. The consecutive bandwidth optimizations are performed by minimizing the corrected Akaike criteria.multiscale_gwr
mydata is a simulated data set of a mgwrsar modelmydata
mydataf is a Simple Feature object with real estate data in south of France.mydatasf
normW row normalization of dgCMatrixnormW
plot_effect plot_effect is a function that plots the effect of a variable X_k with spatially varying coefficient, i.e X_k * Beta_k(u_i,v_i) for comparing the magnitude of effects of between variables.plot_effect
Plot method for mgwrsar modelplot,mgwrsar,missing-method plot.mgwrsar
predict method for mgwrsar modelpredict,mgwrsar-method
residuals for mgwrsar modelresiduals,mgwrsar-method
Estimation of linear and local linear model with spatial autocorrelation model (mgwrsar).simu_multiscale
summary_Matrix to be documentedsummary_Matrix
summary for mgwrsar modelsummary,mgwrsar-method
Top-Down Scaling approach of multiscale GWRtds_mgwr