Package: BayesGP 0.1.3
Ziang Zhang
BayesGP: Efficient Implementation of Gaussian Process in Bayesian Hierarchical Models
Implements Bayesian hierarchical models with flexible Gaussian process priors, focusing on Extended Latent Gaussian Models and incorporating various Gaussian process priors for Bayesian smoothing. Computations leverage finite element approximations and adaptive quadrature for efficient inference. Methods are detailed in Zhang, Stringer, Brown, and Stafford (2023) <doi:10.1177/09622802221134172>; Zhang, Stringer, Brown, and Stafford (2024) <doi:10.1080/10618600.2023.2289532>; Zhang, Brown, and Stafford (2023) <doi:10.48550/arXiv.2305.09914>; and Stringer, Brown, and Stafford (2021) <doi:10.1111/biom.13329>.
Authors:
BayesGP_0.1.3.tar.gz
BayesGP_0.1.3.tar.gz(r-4.5-noble)BayesGP_0.1.3.tar.gz(r-4.4-noble)
BayesGP_0.1.3.tgz(r-4.4-emscripten)
BayesGP.pdf |BayesGP.html✨
BayesGP/json (API)
NEWS
# Install 'BayesGP' in R: |
install.packages('BayesGP', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- PEN_death - The monthly all-cause mortality for male with age less than 40 in Pennsylvania.
- ccData - A simulated dataset from the case-crossover model.
- covid_canada - The COVID-19 daily death data in Canada.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:7da6f52713. Checks:2 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 12 2025 |
R-4.5-linux-x86_64 | OK | Jan 12 2025 |
Exports:compute_post_fun_iwpcompute_post_fun_sgpcompute_weights_precision_helpercustom_templateextract_mean_interval_given_sampsfget_default_option_list_MCMCglobal_poly_helperglobal_poly_helper_sgplocal_poly_helpermodel_fitmodel_fit_looppara_densitypost_tableprior_conversion_iwpprior_conversion_sgpsample_fixed_effectsd_densitysd_plot
Dependencies:abindaghqashbackportsBHbitopscallrcheckmatecliclustercolorspacedata.tabledescdeSolvedistributionalfansifarverfdafdsFNNgenericsggplot2gluegridExtragtablehdrcdeinlineisobandkernlabKernSmoothkslabelingLaplacesDemonlatticelifecyclelocfitloomagrittrMASSMatrixmatrixStatsmclustmgcvmulticoolmunsellmvQuadmvtnormnlmenumDerivpcaPPpillarpkgbuildpkgconfigpolynomposteriorpracmaprocessxpsQuickJSRR6rainbowRColorBrewerRcppRcppEigenRcppParallelRCurlrlangrstanscalessfsmiscStanHeadersstatmodtensorAtibbleTMBtmbstanutf8vctrsviridisLitewithr
BayesGP: COVID-19 Example
Rendered fromBayesGP-covid_example.Rmd
usingknitr::rmarkdown
on Jan 12 2025.Last update: 2024-11-12
Started: 2024-11-12
BayesGP: Fitting sGP
Rendered fromBayesGP-sGP.Rmd
usingknitr::rmarkdown
on Jan 12 2025.Last update: 2024-11-12
Started: 2024-11-12
BayesGP: Fitting Model with Partial Likelihood
Rendered fromBayesGP-Partial_Likelihood.Rmd
usingknitr::rmarkdown
on Jan 12 2025.Last update: 2024-11-12
Started: 2024-11-12