Package: SAutomata 0.1.0

Muhammad Kashif Hanif

SAutomata: Inference and Learning in Stochastic Automata

Machine learning provides algorithms that can learn from data and make inferences or predictions. Stochastic automata is a class of input/output devices which can model components. This work provides implementation an inference algorithm for stochastic automata which is similar to the Viterbi algorithm. Moreover, we specify a learning algorithm using the expectation-maximization technique and provide a more efficient implementation of the Baum-Welch algorithm for stochastic automata. This work is based on Inference and learning in stochastic automata was by Karl-Heinz Zimmermann(2017) <doi:10.12732/ijpam.v115i3.15>.

Authors:Muhammad Kashif Hanif [cre, aut], Muhammad Umer Sarwar [aut], Rehman Ahmad [aut], Zeeshan Ahmad [aut], Karl-Heinz Zimmermann [aut]

SAutomata_0.1.0.tar.gz
SAutomata_0.1.0.tar.gz(r-4.5-noble)SAutomata_0.1.0.tar.gz(r-4.4-noble)
SAutomata_0.1.0.tgz(r-4.4-emscripten)SAutomata_0.1.0.tgz(r-4.3-emscripten)
SAutomata.pdf |SAutomata.html
SAutomata/json (API)

# Install 'SAutomata' in R:
install.packages('SAutomata', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 6 scripts 100 downloads 6 exports 0 dependencies

Last updated 6 years agofrom:a3a3572abe. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 12 2025
R-4.5-linuxOKJan 12 2025

Exports:BaumWelchinitSASbackwardscoresSforwardTOC.sampleData

Dependencies: