Package: lipidomeR 0.1.2

Tommi Suvitaival
lipidomeR: Integrative Visualizations of the Lipidome
Create lipidome-wide heatmaps of statistics with the 'lipidomeR'. The 'lipidomeR' provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With 'lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the 'lipidomeR' helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.
Authors:
lipidomeR_0.1.2.tar.gz
lipidomeR_0.1.2.tar.gz(r-4.5-noble)lipidomeR_0.1.2.tar.gz(r-4.4-noble)
lipidomeR_0.1.2.tgz(r-4.4-emscripten)lipidomeR_0.1.2.tgz(r-4.3-emscripten)
lipidomeR.pdf |lipidomeR.html✨
lipidomeR/json (API)
NEWS
# Install 'lipidomeR' in R: |
install.packages('lipidomeR', repos = 'https://cloud.r-project.org') |
- cancerlipidome - Levels of lipids in benign and malignant breast tumors in humans.
- humanlipidome - Concentrations of lipids in a human plasma reference sample
- liverlipidome - Levels of lipids in the human liver with or without non-alcoholic liver disease (NAFLD).
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:cdaf354700. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 26 2025 |
R-4.5-linux | OK | Mar 26 2025 |
R-4.4-linux | OK | Mar 26 2025 |
Exports:compute_F_test_with_limmacompute_models_with_limmacompute_post_hoc_test_with_limmaheatmap_lipidomeheatmap_lipidome_from_limmainstall_Bioconductor_dependenciesmap_lipid_names
Dependencies:BiocManagerbitbit64classclicliprcolorspacecpp11crayonDBIdplyre1071evaluatefansifarverforcatsgdatagenericsggplot2gluegmodelsgtablegtoolshavenhighrhmsisobandknitrlabelinglabelledlatticelifecyclelimmamagrittrMASSMatrixmgcvminqamitoolsmunsellnlmenumDerivpillarpkgconfigplyrprettyunitsprogressproxypurrrR6RColorBrewerRcppRcppArmadilloreadrreshape2rlangscalesshadowtextstatmodstringistringrsurveysurvivaltableonetibbletidyrtidyselecttzdbutf8vctrsviridisLitevroomwithrxfunyamlzoo
Citation
To cite package ‘lipidomeR’ in publications use:
Suvitaival T (2020). lipidomeR: Integrative Visualizations of the Lipidome. R package version 0.1.2, https://CRAN.R-project.org/package=lipidomeR.
Corresponding BibTeX entry:
@Manual{, title = {lipidomeR: Integrative Visualizations of the Lipidome}, author = {Tommi Suvitaival}, year = {2020}, note = {R package version 0.1.2}, url = {https://CRAN.R-project.org/package=lipidomeR}, }
Readme and manuals
lipidomeR
Tommi Suvitaival, Steno Diabetes Center Copenhagen, TSUV0001@RegionH.DK 2020-03-06
Introduction
Create lipidome-wide heatmaps of statistics with the 'lipidomeR'. The 'lipidomeR' provides a streamlined pipeline for the systematic interpretation of the lipidome through publication-ready visualizations of regression models fitted on lipidomics data. With 'lipidomeR', associations between covariates and the lipidome can be interpreted systematically and intuitively through heatmaps, where lipids are categorized by the lipid class and are presented on two-dimensional maps organized by the lipid size and level of saturation. This way, the 'lipidomeR' helps you gain an immediate understanding of the multivariate patterns in the lipidome already at first glance. You can create lipidome-wide heatmaps of statistical associations, changes, differences, variation, or other lipid-specific values. The heatmaps are provided with publication-ready quality and the results behind the visualizations are based on rigorous statistical models.
Getting Started
install.packages( "lipidomeR" )
library( "lipidomeR" )
Workflow
- The typical lipidomeR workflow, involving an ordinary linear regression model, is shown in bold.
Examples
humanlipidome
# Load the humanlipidome data set.
data( lipidomeR::humanlipidome )
# Transform the concentrations into log-10 scale.
humanlipidome$'Concentration_log10_umol_per_mL' <-
log10( humanlipidome$'Concentration' )
# Enumerate the lipid names into values.
names.mapping <- map_lipid_names( x = humanlipidome$'Name' )
# Create the lipidomeR heatmap of lipid concentrations.
heatmap_lipidome(
x = humanlipidome[ , c( "Name", "Concentration_log10_umol_per_mL" ) ],
names.mapping = names.mapping,
class.facet = "wrap",
x.names = "Name",
fill.limits =
range(
x = humanlipidome$"Concentration_log10_umol_per_mL",
na.rm = TRUE
),
fill.midpoint =
sum(
range(
x = humanlipidome$"Concentration_log10_umol_per_mL",
na.rm = TRUE
)
) / 2,
melt.value.name = "Concentration_umol_per_mL_log10",
scales = "free"
)
cancerlipidome
# Load the cancerlipidome data set.
data( lipidomeR::cancerlipidome )
# Convert the data into wide format, where each lipid is one column and
# each sample is one row.
cancerlipidome.wide <-
tidyr::pivot_wider(
data = cancerlipidome,
names_from = Lipid_Name,
values_from = Lipid_Level
)
# Inspect the data frame.
# View( cancerlipidome.wide )
# Create a mapping of the lipid names.
names.mapping <-
map_lipid_names( x = unique( cancerlipidome$"Lipid_Name" ) )
# Compute the regression models.
result.limma <-
compute_models_with_limma(
x = cancerlipidome.wide,
dependent.variables = names.mapping$"Name",
independent.variables = c( "Group" )
)
## Fitting models: ~ Group
# Create the figure of all lipids and factors.
figure.output <-
heatmap_lipidome_from_limma(
x = result.limma$"model",
names.mapping = names.mapping,
axis.x.carbons = FALSE,
class.facet = "row",
plot.all = TRUE,
plot.individual = FALSE,
print.figure = TRUE,
scales = "free",
space = "free"
)
# Create factor-specific figures.
figure.output <-
heatmap_lipidome_from_limma(
x = result.limma$"model",
names.mapping = names.mapping,
axis.x.carbons = FALSE,
class.facet = "wrap",
omit.class = "PA",
plot.all = FALSE,
plot.individual = TRUE,
print.figure = FALSE,
scales = "free",
space = "free"
)
# Print the figure of differences between cancer and benign tumors.
print( figure.output[[ "GroupCancer" ]] )
liverlipidome
# Load the liverlipidome data set.
data( lipidomeR::liverlipidome )
# Convert the data into wide format, where each lipid is one column and
# each sample is one row.
liverlipidome.wide <-
tidyr::pivot_wider(
data = liverlipidome,
names_from = Lipid_Name,
values_from = Lipid_Level
)
# Create a mapping of the lipid names.
names.mapping <-
map_lipid_names( x = unique( liverlipidome$"Lipid_Name" ) )
# Compute the regression models.
result.limma <-
compute_models_with_limma(
x = liverlipidome.wide,
dependent.variables = names.mapping$"Name",
independent.variables = c( "Diagnosis" ),
F.test = TRUE # Compute an F-test for a factor variable.
)
## Fitting models: ~ Diagnosis
# Compute the F-test.
result.limma <-
compute_F_test_with_limma(
x = result.limma,
print.table = FALSE
)
# Print a figure of the F-test.
figure.output <-
heatmap_lipidome_from_limma(
x = result.limma,
names.mapping = names.mapping,
F.test = TRUE,
axis.x.carbons = FALSE,
class.facet = "wrap",
plot.all = FALSE,
plot.individual = TRUE,
scales = "free",
space = "free"
)
# Compute pairwise post-hoc comparisons between the factor levels for
# the dependent variables (i.e., lipids) with a significant F-test result.
result.limma <-
compute_post_hoc_test_with_limma(
x = result.limma,
remap.level.names = TRUE
)
# Print a figure of all post-hoc comparisons.
figure.output <-
heatmap_lipidome_from_limma(
x = result.limma$"result.post.hoc.test",
names.mapping = names.mapping,
axis.x.carbons = FALSE,
plot.all = TRUE,
plot.individual = FALSE,
scales = "free",
space = "free"
)
# Specify the contrasts of the post-hoc comparison that will be included
# in the figure.
contrasts.included <-
c( "DiagnosisSteatosis", "DiagnosisNASH", "DiagnosisCirrhosis" )
# Get the omitted contrasts based on the above definition.
contrasts.omitted <-
colnames( result.limma$"result.post.hoc.test"$"p.value" )[
!(
colnames( result.limma$"result.post.hoc.test"$"p.value" ) %in%
contrasts.included
)
]
# Find dependent variables (i.e., lipids) that have any significant
# difference.
has.any.significant <-
apply(
X =
result.limma$"result.post.hoc.test"$"p.value"[
,
contrasts.included
],
MAR = 2,
FUN = p.adjust,
method = "BH"
)
has.any.significant <-
rownames(
has.any.significant[
apply(
X = has.any.significant < 0.05,
MAR = 1,
FUN = any
),
]
)
# Include in the figure only lipid classes that have at least four
# significant differences.
classes.included <-
names(
which(
table(
names.mapping[
make.names( has.any.significant ), "Class"
]
) > 3
)
)
classes.omitted <- unique( names.mapping$"Class" )
classes.omitted <-
classes.omitted[ !( classes.omitted ) %in% classes.included ]
# Print a figure of the selected post-hoc-comparisons.
figure.output <-
heatmap_lipidome_from_limma(
x = result.limma$"result.post.hoc.test",
names.mapping = names.mapping,
axis.x.carbons = FALSE,
omit.class = classes.omitted,
omit.factor = contrasts.omitted,
plot.all = TRUE,
plot.individual = FALSE,
scales = "free",
space = "free"
)
SessionInfo
utils::sessionInfo()
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /services/tools/intel/perflibs/2019_update5/compilers_and_libraries_2019.5.281/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.3 compiler_3.6.1 pillar_1.4.3 RColorBrewer_1.1-2
## [5] plyr_1.8.5 tools_3.6.1 digest_0.6.25 jsonlite_1.6.1
## [9] evaluate_0.14 lifecycle_0.1.0 tibble_2.1.3 gtable_0.3.0
## [13] pkgconfig_2.0.3 rlang_0.4.4 rstudioapi_0.11 curl_4.3
## [17] yaml_2.2.1 xfun_0.12 dplyr_0.8.4 DiagrammeR_1.0.5
## [21] stringr_1.4.0 knitr_1.28 vctrs_0.2.3 htmlwidgets_1.5.1
## [25] tidyselect_1.0.0 grid_3.6.1 glue_1.3.1 R6_2.4.1
## [29] DiagrammeRsvg_0.1 rmarkdown_2.1 limma_3.42.2 tidyr_1.0.2
## [33] farver_2.0.3 purrr_0.3.3 ggplot2_3.2.1 reshape2_1.4.3
## [37] magrittr_1.5 ellipsis_0.3.0 scales_1.1.0 htmltools_0.4.0
## [41] assertthat_0.2.1 colorspace_1.4-1 labeling_0.3 rsvg_1.3
## [45] V8_3.0.1 stringi_1.4.6 visNetwork_2.0.9 lazyeval_0.2.2
## [49] munsell_0.5.0 crayon_1.3.4
Help Manual
Help page | Topics |
---|---|
Levels of lipids in benign and malignant breast tumors in humans. | cancerlipidome |
Compute an F-test for a multi-level factor independent variable | compute_F_test_with_limma |
Compute lipid-specific regression models | compute_models_with_limma |
Compute pairwise post-hoc comparisons for a multi-level factor | compute_post_hoc_test_with_limma |
Create 'lipidomeR' heatmaps of arbitrary lipid-specific values. | heatmap_lipidome |
Create 'lipidomeR' heatmaps of model statistics | heatmap_lipidome_from_limma |
Concentrations of lipids in a human plasma reference sample | humanlipidome |
Install the Bioconductor dependencies for the 'lipidomeR' | install_Bioconductor_dependencies |
Levels of lipids in the human liver with or without non-alcoholic liver disease (NAFLD). | liverlipidome |
Enumerate lipid names into values about lipid class, size and saturation | map_lipid_names |