Package: scregclust 0.2.0

Felix Held

scregclust: Reconstructing the Regulatory Programs of Target Genes in scRNA-Seq Data

Implementation of the scregclust algorithm described in Larsson, Held, et al. (2024) <doi:10.1038/s41467-024-53954-3> which reconstructs regulatory programs of target genes in scRNA-seq data. Target genes are clustered into modules and each module is associated with a linear model describing the regulatory program.

Authors:Felix Held [aut, cre], Ida Larsson [aut], Sven Nelander [aut], André Armatowski [ctb]

scregclust_0.2.0.tar.gz
scregclust_0.2.0.tar.gz(r-4.5-noble)scregclust_0.2.0.tar.gz(r-4.4-noble)
scregclust_0.2.0.tgz(r-4.4-emscripten)scregclust_0.2.0.tgz(r-4.3-emscripten)
scregclust.pdf |scregclust.html
scregclust/json (API)
NEWS

# Install 'scregclust' in R:
install.packages('scregclust', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/scmethods/scregclust/issues

Pkgdown site:https://scmethods.github.io

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

Conda:

cppopenmp

3.00 score 191 downloads 15 exports 35 dependencies

Last updated 4 months agofrom:2ed974f82d. Checks:2 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-linux-x86_64NOTEMar 06 2025
R-4.4-linux-x86_64OKMar 06 2025

Exports:available_resultscluster_overlapfast_corfind_module_sizesget_avg_num_regulatorsget_num_final_configsget_rand_indicesget_regulator_listget_target_gene_moduleskmeansppplot_module_count_helperplot_regulator_networkplot_silhouettesscregclustscregclust_format

Dependencies:clicolorspacecpp11fansifarverggplot2gluegtableigraphisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrprettyunitsR6RColorBrewerRcppRcppEigenreshaperlangscalestibbleutf8vctrsviridisLitewithr

Demonstration of workflow

Rendered frompbmc.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-12-06
Started: 2024-11-21

Citation

Larsson I, Held F, Popova G, Koc A, Kundu S, Jörnsten R, Nelander S (2024). “Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers.” Nature Communications, 15(9699). doi:10.1038/s41467-024-53954-3.

Corresponding BibTeX entry:

  @Article{,
    title = {Reconstructing the regulatory programs underlying the
      phenotypic plasticity of neural cancers},
    author = {Ida Larsson and Felix Held and Gergana Popova and Alper
      Koc and Soumi Kundu and Rebecka Jörnsten and Sven Nelander},
    journal = {Nature Communications},
    year = {2024},
    volume = {15},
    number = {9699},
    doi = {10.1038/s41467-024-53954-3},
  }

Readme and manuals

Single-cell Regulatory-driven Clustering (scregclust)

A diagram illustrating the scregclust algorithm.

The goal of scregclust is to cluster genes by regulatory programs. To do so, genes are clustered into modules which in turn are associated with regulators. The algorithm alternates between associating regulators to modules and reallocating target genes into modules.

Installation

You can install the stable version of scregclust from CRAN with

install.packages("scregclust")

You can install the current development version of scregclust from GitHub with:

# install.packages("devtools")
devtools::install_github("scmethods/scregclust")

Help Manual

Help pageTopics
Extract final configurations into a data frameavailable_results
Create a table of module overlap for two clusteringscluster_overlap
Fast computation of correlationfast_cor
Determine module sizesfind_module_sizes
Get the average number of active regulators per moduleget_avg_num_regulators
Return the number of final configurationsget_num_final_configs
Compute Rand indicesget_rand_indices
Return list of regulator genesget_regulator_list
Extract target gene modules for given penalization parametersget_target_gene_modules
Perform the k-means++ algorithmkmeanspp
Plot average silhouette scores and average predictive R^2plot_module_count_helper
Plotting the regulatory table from scregclust as a directed graphplot_regulator_network
Plot individual silhouette scoresplot_silhouettes
Uncover gene modules and their regulatory programs from single-cell datascregclust
Package data before clusteringscregclust_format