Package: scregclust (via r-universe)

November 25, 2024

Title Reconstructing the Regulatory Programs of Target Genes in scRNA-Seq Data

Version 0.1.10

Description Implementation of the scregclust algorithm described in Larsson, Held, et al. (2024) <doi:10.1038/s41467-024-53954-3> which reconstructs regulatory programs of target genes in scRNA-seq data. Target genes are clustered into modules and each module is associated with a linear model describing the regulatory program.

Encoding UTF-8

Depends R (>= 3.5.0)

```
Imports Matrix, stats, methods, utils, reshape, igraph, graphics, grid, cli, prettyunits, ggplot2, rlang, Rcpp (>= 1.0.8)
```

```
Suggests knitr, rmarkdown, testthat (>= 3.0.0), Seurat (>= 5.0.0), glmGamPoi, hdf5r
```

LinkingTo Rcpp, RcppEigen

VignetteBuilder knitr

RoxygenNote 7.3.2

License GPL (>= 3)

Config/testthat/edition 3

URL https://scmethods.github.io/scregclust/,
 https://github.com/scmethods/scregclust/

BugReports https://github.com/scmethods/scregclust/issues

NeedsCompilation yes

Author Felix Held [aut, cre]

(<https://orcid.org/0000-0002-7679-7752>), Ida Larsson [aut] (<https://orcid.org/0000-0001-5422-4243>), Sven Nelander [aut] (<https://orcid.org/0000-0003-1758-1262>)

Maintainer Felix Held <felix.held@gmail.com>

Repository CRAN

Date/Publication 2024-11-21 07:30:02 UTC

Config/pak/sysreqs libglpk-dev libxml2-dev

Contents

available_results	2
cluster_overlap	3
fast_cor	3
find_module_sizes	1
get_avg_num_regulators	1
get_num_final_configs	5
get_rand_indices	5
get_regulator_list	5
get_target_gene_modules	5
kmeanspp	7
plot_module_count_helper	3
plot_regulator_network	3
plot_silhouettes)
scregclust)
scregclust_format	3
15	5

Index

available_results Extract final configurations into a data frame

Description

Extract final configurations into a data frame

Usage

```
available_results(obj)
```

Arguments

obj An object of class scregclust

Value

A data.frame containing penalization parameters and final configurations for those penalizations.

cluster_overlap Create a table of module overlap for two clusterings

Description

Compares two clusterings and creates a table of overlap between them. Module labels do not have to match.

Usage

```
cluster_overlap(k1, k2)
```

Arguments

k1	First clustering
k2	Second clustering

Value

A matrix showing the module overlap with the labels of k1 in the columns and the labels of k2 in the rows.

fast_cor	Fast comp	utation o	f correlation
	1		

Description

This uses a more memory-intensive but much faster algorithm than the built-in cor function.

Usage

fast_cor(x, y)

Arguments

х	first input matrix
У	second input matrix

Details

Computes the correlation between the columns of x and y.

Value

Correlations matrix between the columns of x and y

find_module_sizes Determine module sizes

Description

Determine module sizes

Usage

find_module_sizes(module, n_modules)

Arguments

module	Vector of module indices
n_modules	Total number of modules

Value

A named vector containining the name of the module (its index or "Noise") and the number of elements in that module

```
get_avg_num_regulators
```

Get the average number of active regulators per module

Description

Get the average number of active regulators per module

Usage

```
get_avg_num_regulators(fit)
```

Arguments

fit An object of class scRegClust

Value

A data.frame containing the average number of active regulators per module for each penalization parameter.

get_num_final_configs Return the number of final configurations

Description

Returns the number of final configurations per penalization parameter in an scRegClust object.

Usage

```
get_num_final_configs(fit)
```

Arguments

fit An object of class scRegClust

Value

An integer vector containing the number of final configurations for each penalization parameter.

get_rand_indices Compute Rand indices

Description

Compute Rand indices for fitted scregclust object

Usage

get_rand_indices(fit, groundtruth, adjusted = TRUE)

Arguments

fit	An object of class scregclust
groundtruth	A known clustering of the target genes (integer vector)
adjusted	If TRUE, the Adjusted Rand index is computed. Otherwise the ordinary Rand
	index is computed.

Value

A data.frame containing the Rand indices. Since there can be more than one final configuration for some penalization parameters, Rand indices are averaged for each fixed penalization parameter. Returned are the mean, standard deviation and number of final configurations that were averaged.

References

W. M. Rand (1971). "Objective criteria for the evaluation of clustering methods". Journal of the American Statistical Association 66 (336): 846–850. DOI:10.2307/2284239

Lawrence Hubert and Phipps Arabie (1985). "Comparing partitions". Journal of Classification. 2 (1): 193–218. DOI:10.1007/BF01908075

get_regulator_list Return list of regulator genes

Description

Return list of regulator genes

Usage

```
get_regulator_list(mode = c("TF", "kinase"))
```

Arguments

mode

Determines which genes are considered to be regulators. Currently supports TF=transcription factors and kinases.

Value

a list of gene symbols

See Also

scregclust_format()

get_target_gene_modules

Extract target gene modules for given penalization parameters

Description

Extract target gene modules for given penalization parameters

Usage

```
get_target_gene_modules(fit, penalization = NULL)
```

kmeanspp

Arguments

fit	An object of class scregclust
penalization	A numeric vector of penalization parameters. The penalization parameters speci-
	ficed here must have been used used during fitting of the fit object.

Value

A list of lists of final target modules. One list for each parameter in penalization. The lists contain the modules of target genes for each final configuration.

kmeanspp

Perform the k-means++ algorithm

Description

Performs the k-means++ algorithm to cluster the rows of the input matrix.

Usage

```
kmeanspp(x, n_cluster, n_init_clusterings = 10L, n_max_iter = 10L)
```

Arguments

х	Input matrix (n x p)
n_cluster	Number of clusters
n_init_clusteri	ngs
	Number of repeated random initializations to perform
n_max_iter	Number of maximum iterations to perform in the k-means algorithm

Details

Estimation is repeated

Value

An object of class stats::kmeans.

References

David Arthur and Sergei Vassilvitskii. K-Means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07, pages 1027—1035. Society for Industrial and Applied Mathematics, 2007.

```
plot_module_count_helper
```

Plot average silhouette scores and average predictive R^2

Description

Plot average silhouette scores and average predictive \mathbb{R}^2

Usage

```
plot_module_count_helper(list_of_fits, penalization)
```

Arguments

list_of_fits	A list of scregclust objects each fit to the same dataset across a variety of module counts (varying n_modules while running scregclust).
penalization	Either a single numeric value requesting the results for the same penalty parameter across all fits in list_of_fits, or one for each individual fit.

Value

A ggplot2 plot showing the average silhouette score and the average predictive R^2

plot_regulator_network

Plotting the regulatory table from scregclust as a directed graph

Description

Plotting the regulatory table from scregclust as a directed graph

Usage

```
plot_regulator_network(
    output,
    arrow_size = 0.3,
    edge_scaling = 30,
    no_links = 6,
    col = c("gray80", "#FC7165", "#BD828C", "#9D8A9F", "#7D92B2", "#BDA88C", "#FCBD65",
    "#F2BB90", "#E7B9BA", "#BDB69C", "#92B27D", "#9B8BA5", "#9D7DB2", "#94A5BF")
)
```

plot_silhouettes

Arguments

output	Object of type scregclust_output from a fit of the scregclust algorithm.
arrow_size	Size of arrow head
edge_scaling	Scaling factor for edge width
no_links	Threshold value (0-10) for number of edges to show, higher value = more strin- gent threshold = less edges
col	color

Value

Graph with gene modules and regulators as nodes

plot_silhouettes Plot individual silhouette scores

Description

Plot individual silhouette scores

Usage

```
plot_silhouettes(list_of_fits, penalization, final_config = 1L)
```

Arguments

list_of_fits	A list of scregclust objects each fit to the same dataset across a variety of module counts (varying n_modules when running scregclust).
penalization	Either a single numeric value requesting the results for the same penalty parameter across all fits in list_of_fits, or one for each individual fit.
final_config	The final configuration that should be visualized. Either a single number to be used for all fits in list_of_fits, or one for each individual fit.

Value

A ggplot2 plot showing the the silhouette scores for each supplied fit.

scregclust

Description

Use the scRegClust algorithm to determine gene modules and their regulatory programs from single-cell data.

Usage

```
scregclust(
  expression,
  genesymbols,
  is_regulator,
  penalization,
  n_modules,
  initial_target_modules = NULL,
  sample_assignment = NULL,
  center = TRUE,
  split1_proportion = 0.5,
  total_proportion = 1,
  split_indices = NULL,
  prior_indicator = NULL,
  prior_genesymbols = NULL,
  prior_baseline = 1e-06,
  prior_weight = 0.5,
 min_module_size = 0L,
  allocate_per_obs = TRUE,
  noise_threshold = 0.025,
  n_cycles = 50L,
  use_kmeanspp_init = TRUE,
  n_initializations = 50L,
 max_optim_iter = 10000L,
  tol_coop_rel = 1e-08,
  tol_coop_abs = 1e-12,
  tol_nnls = 1e-04,
  compute_predictive_r2 = TRUE,
  compute_silhouette = FALSE,
  nowarnings = FALSE,
  verbose = TRUE
)
```

Arguments

expression

 $p \times n$ matrix of pre-processed single cell expression data with p rows of genes and n columns of cells.

scregclust

genesymbols	A vector of gene names corresponding to rows of expression. Has to be of length p.
is_regulator	An indicator vector where 1 indicates that the corresponding row in expression is a candidate regulator. All other rows represent target genes. Has to be of length p.
penalization	Sparsity penalty related to the amount of regulators associated with each mod- ule. Either a single positive number or a vector of positive numbers.
n_modules	Requested number of modules (integer). If this is provided without specifying initial_target_modules, then an initial module allocation is performed on the cross-correlation matrix of targets and genes on the first dataset after data splitting.
initial_target_	modules
	The initial assignment of target genes to modules of length sum(is_regulator == 0L). If this is not specified, then see n_modules regarding module initialization. If provided, use_kmeanspp_init and n_initializations are ignored.
sample_assignme	ent
	A vector of sample assignment for each cell, can be used to perform the data splitting with stratification. Has to be of length n. No stratification if NULL is supplied.
center	$Whether \ or \ not \ genes \ should \ be \ centered \ within \ each \ subgroup \ defined \ in \ sample_assignment.$
<pre>split1_proporti</pre>	on
	The proportion to use for the first dataset during data splitting. The propor- tion for the second dataset is 1 - split1_proportion. If stratification with sample_assignment is used, then the proportion of each strata is controlled.
total_proportio	on
	Can be used to only use a proportion of the supplied observations. The propor- tion of the first dataset during data splitting in relation to the full dataset will be total_proportion * split1_proportion.
split_indices	Can be used to provide an explicit data split. If this is supplied then split1_proportion, and total_proportion are ignored. Note that if sample_assignment is pro- vided and center == TRUE, then subgroup centering will be performed as in the case of random splitting. A vector of length n containing entries 1 for cells in the first data split, 2 for cells in the second data split and NA for cells that should be excluded from the computations.
prior_indicator	
	An indicator matrix (sparse or dense) of size q x q that indicates whether there is a known functional relationship between two genes. Ideally, this is supplied as a sparse matrix (sparseMatrix in the Matrix package). If not, then the matrix is converted to one.
prior_genesymbo	ols
	A vector of gene names of length q corresponding to the rows/columns in prior_indicator. Does not have to be the same as genesymbols, but only useful if there is overlap.
prior_baseline	A positive baseline for the network prior. The larger this parameter is, the less impact the network prior will have.
prior_weight	A number between 0 and 1 indicating the strength of the prior in relation to the data. 0 ignores the prior and makes the algorithm completely data-driven. 1 uses only the prior during module allocation.

<pre>min_module_size</pre>		
	Minimum required size of target genes in a module. Smaller modules are emp-	
	tied.	
allocate_per_ob	DS	
	Whether module allocation should be performed for each observation in the second data split separately. If FALSE, target genes are allocated into modules on the aggregate sum of squares across all observations in the second data split.	
noise_threshold		
	Threshold for the best R^2 of a target gene before it gets identified as noise.	
n_cycles	Number of maximum algorithmic cycles.	
use_kmeanspp_ir	nit	
	Use kmeans++ for module initialization if initial_target_modules is a single integer; otherwise use kmeans with random initial cluster centers	
n_initializations		
_	Number of kmeans(++) initialization runs.	
<pre>max_optim_iter</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps.	
<pre>max_optim_iter tol_coop_rel</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step.	
<pre>max_optim_iter tol_coop_rel tol_coop_abs</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step.	
<pre>max_optim_iter tol_coop_rel tol_coop_abs tol_nnls</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step. Convergence tolerance during optimization in the NNLS step.	
<pre>max_optim_iter tol_coop_rel tol_coop_abs tol_nnls compute_predict</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step. Convergence tolerance during optimization in the NNLS step. tive_r2	
<pre>max_optim_iter tol_coop_rel tol_coop_abs tol_nnls compute_predict</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step. Convergence tolerance during optimization in the NNLS step. tive_r2 Whether to compute predictive R^2 per module as well as regulator importance.	
<pre>max_optim_iter tol_coop_rel tol_coop_abs tol_nnls compute_predict compute_silhoue</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step. Convergence tolerance during optimization in the NNLS step. tive_r2 Whether to compute predictive R^2 per module as well as regulator importance.	
<pre>max_optim_iter tol_coop_rel tol_coop_abs tol_nnls compute_predict compute_silhoue</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step. Convergence tolerance during optimization in the NNLS step. tive_r2 Whether to compute predictive R^2 per module as well as regulator importance. ette Whether to compute silhouette scores for each target gene.	
<pre>max_optim_iter tol_coop_rel tol_coop_abs tol_nnls compute_predict compute_silhoue nowarnings</pre>	Number of kmeans(++) initialization runs. Maximum number of iterations during optimization in the coop-Lasso and NNLS steps. Relative convergence tolerance during optimization in the coop-Lasso step. Absolute convergence tolerance during optimization in the coop-Lasso step. Convergence tolerance during optimization in the NNLS step. tive_r2 Whether to compute predictive R^2 per module as well as regulator importance. ette Whether to compute silhouette scores for each target gene. When turned on then no warning messages are shown.	

Value

A list with S3 class scregclust containing

penalization	The supplied penalization parameters	
results	A list of result lists (each with S3 class scregclust_result), one for each supplied penalization parameter. See below.	
initial_target_modules		
	Initial allocation of target genes into modules.	
split_indices	either verbatim the vector given as input or a vector encoding the splits as $NA =$ not included, 1 = split 1 or 2 = split 2. Allows reproduciblity of data splits.	

For each supplied penalization parameter, results contains a list with

- the current penalization parameter,
- the supplied genesymbols after filtering (as used during fitting),
- the supplied is_regulator vector after filtering (as used during fitting),
- the number of fitted modules n_modules,

- whether the current run converged to a single configuration (as a boolean),
- as well as an output object containing the numeric results for each final configuration.

It is possible that the algorithm ends in a finite cycle of configurations instead of a unique final configuration. Therefore, output is a list with each element itself being a list with the following contents:

reg_table a regulator table, a matrix of weights for each regulator and module

- module vector of same length as genesymbols containing the module assignments for all genes with regulators marked as NA. Genes considered noise are marked as -1.
- module_all same as module, however, genes that were marked as noise (-1 in module) are assigned to the module in which it has the largest R^2 , even if it is below noise_threshold.
- r2 matrix of predictive R^2 value for each target gene and module
- best_r2 vector of best predictive R^2 for each gene (regulators marked with NA)
- $best_r2_idx$ module index corresponding to best predictive R^2 for each gene (regulators marked with NA)
- r2_module a vector of predictive R² values for each module (included if compute_predictive_r2 == TRUE)
- importance a matrix of importance values for each regulator (rows) and module (columns) (included if compute_predictive_r2 == TRUE)
- r2_cross_module_per_target a matrix of cross module R^2 values for each target gene (rows) and each module (columns) (included if compute_silhouette == TRUE)
- silhouette a vector of silhouette scores for each target gene (included if compute_silhouette == TRUE)
- models regulator selection for each module as a matrix with regulators in rows and modules in columns
- signs regulator signs for each module as a matrix with regulators in rows and modules in columns
- weights average regulator coefficient for each module
- coeffs list of regulator coefficient matrices for each module for all target genes as re-estimated in the NNLS step
- sigmas matrix of residual variances, one per target gene in each module; derived from the residuals in NNLS step

scregclust_format Package data before clustering

Description

Package data before clustering

Usage

```
scregclust_format(expression_matrix, mode = c("TF", "kinase"))
```

Arguments

expression_matrix		
	The p x n gene expression matrix with gene symbols as rownames.	
mode	Determines which genes are considered to be regulators.	

Value

A list with	
genesymbols	The gene symbols extracted from the expression matrix
<pre>sample_assignme</pre>	nt
	A vector filled with 1's of the same length as there are columns in the gene expression matrix.
is_regulator	Whether a gene is considered to be a regulator or not, determined dependent on mode.

See Also

get_regulator_list()

Index

* helpers available_results, 2 cluster_overlap, 3 fast_cor, 3 find_module_sizes, 4 kmeanspp, 7 * main scregclust, 10 scregclust_format, 13 * plotting plot_module_count_helper, 8 plot_regulator_network, 8 plot_silhouettes, 9 * utilities get_avg_num_regulators,4 get_num_final_configs, 5 get_rand_indices, 5 get_regulator_list, 6 get_target_gene_modules, 6 available_results, 2 cluster_overlap, 3 data.frame, 2, 4, 5 fast_cor, 3 find_module_sizes, 4 get_avg_num_regulators,4 get_num_final_configs, 5 get_rand_indices, 5 get_regulator_list, 6 get_regulator_list(), 14 get_target_gene_modules, 6 kmeanspp, 7 plot_module_count_helper, 8 plot_regulator_network, 8

```
plot_silhouettes, 9
```

scregclust, *8*, *9*, 10 scregclust_format, 13 scregclust_format(), 6 stats::kmeans, 7