Package: quanteda.textmodels 0.9.10

Kenneth Benoit
quanteda.textmodels: Scaling Models and Classifiers for Textual Data
Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of 'Laver', 'Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, 'Wordscores' model, the Perry and 'Benoit' (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, and the 'Slapin' and 'Proksch' (2008) <doi:10.1111/j.1540-5907.2008.00338.x> 'wordfish' model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear 'SVMs' specially designed for sparse textual data.
Authors:
quanteda.textmodels_0.9.10.tar.gz
quanteda.textmodels_0.9.10.tar.gz(r-4.5-noble)quanteda.textmodels_0.9.10.tar.gz(r-4.4-noble)
quanteda.textmodels_0.9.10.tgz(r-4.4-emscripten)quanteda.textmodels_0.9.10.tgz(r-4.3-emscripten)
quanteda.textmodels.pdf |quanteda.textmodels.html✨
quanteda.textmodels/json (API)
NEWS
# Install 'quanteda.textmodels' in R: |
install.packages('quanteda.textmodels', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/quanteda/quanteda.textmodels/issues
- data_corpus_EPcoaldebate - Crowd-labelled sentence corpus from a 2010 EP debate on coal subsidies
- data_corpus_dailnoconf1991 - Confidence debate from 1991 Irish Parliament
- data_corpus_irishbudget2010 - Irish budget speeches from 2010
- data_corpus_moviereviews - Movie reviews with polarity from Pang and Lee
Last updated 2 months agofrom:862a9c0fc5. Checks:2 OK, 1 NOTE. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 13 2025 |
R-4.5-linux-x86_64 | OK | Mar 13 2025 |
R-4.4-linux-x86_64 | NOTE | Mar 13 2025 |
Exports:affinityas.coefficients_textmodelas.statistics_textmodelas.summary.textmodelcoefficients.textmodel_cacoefficients.textmodel_lsacoefficients.textmodel_wordfishtextmodel_affinitytextmodel_catextmodel_lrtextmodel_lsatextmodel_nbtextmodel_svmlintextmodel_wordfishtextmodel_wordscorestextplot_influence
Dependencies:clicodetoolsfastmatchforeachglmnetglueISOcodesiteratorsjsonlitelatticelifecyclemagrittrMatrixquantedaRcppRcppArmadilloRcppEigenrlangRSpectrashapeSnowballCstopwordsstringisurvivalxml2yaml
Citation
To cite package ‘quanteda.textmodels’ in publications use:
Benoit K, Watanabe K, Wang H, Perry P, Lauderdale B, Gruber J, Lowe W (2025). quanteda.textmodels: Scaling Models and Classifiers for Textual Data. R package version 0.9.10, https://CRAN.R-project.org/package=quanteda.textmodels.
Corresponding BibTeX entry:
@Manual{, title = {quanteda.textmodels: Scaling Models and Classifiers for Textual Data}, author = {Kenneth Benoit and Kohei Watanabe and Haiyan Wang and Patrick O. Perry and Benjamin Lauderdale and Johannes Gruber and William Lowe}, year = {2025}, note = {R package version 0.9.10}, url = {https://CRAN.R-project.org/package=quanteda.textmodels}, }
Readme and manuals
quanteda.textmodels
About
An R package adding text scaling models and classifiers for quanteda. Prior to quanteda v2, many of these were part of that package. Early development was supported by the European Research Council grant ERC-2011-StG 283794-QUANTESS.
For more details, see https://quanteda.io.
How to Install
You can install it via the normal way from CRAN, using your R GUI or
install.packages("quanteda.textmodels")
Or for the latest development version:
# devtools package required to install quanteda from Github
remotes::install_github("quanteda/quanteda.textmodels")
Because this compiles some C++ and Fortran source code, you will need to have installed the appropriate compilers. On Windows platform, this means the Rtools software available from CRAN, or the macOS tools from macOS tools, including namely the Clang 6.x compiler and the GNU Fortran compiler (as quanteda requires gfortran to build). If you are still getting errors related to gfortran, follow the fixes here.
How to cite
Benoit, Kenneth, Kohei Watanabe, Haiyan Wang, Paul Nulty, Adam Obeng, Stefan Müller, and Akitaka Matsuo. (2018) “quanteda: An R package for the quantitative analysis of textual data”. Journal of Open Source Software. 3(30), 774. https://doi.org/10.21105/joss.00774.
For a BibTeX entry, use the output from
citation(package = "quanteda")
.
Leaving Feedback
If you like quanteda, please consider leaving feedback or a testimonial here.
Contributing
Contributions in the form of feedback, comments, code, and bug reports are most welcome. How to contribute:
- Fork the source code, modify, and issue a pull request through the project GitHub page. See our Contributor Code of Conduct and the all-important quanteda Style Guide.
- Issues, bug reports, and wish lists: File a GitHub issue.
- Usage questions: Submit a question on the quanteda channel on StackOverflow.
- Contact the maintainer by email.
Help Manual
Help page | Topics |
---|---|
Confidence debate from 1991 Irish Parliament | data_corpus_dailnoconf1991 |
Crowd-labelled sentence corpus from a 2010 EP debate on coal subsidies | data_corpus_EPcoaldebate |
Irish budget speeches from 2010 | data_corpus_irishbudget2010 |
Movie reviews with polarity from Pang and Lee (2004) | data_corpus_moviereviews |
Class affinity maximum likelihood text scaling model | textmodel_affinity |
Correspondence analysis of a document-feature matrix | textmodel_ca |
Logistic regression classifier for texts | textmodel_lr |
Latent Semantic Analysis | textmodel_lsa |
Naive Bayes classifier for texts | textmodel_nb |
Wordfish text model | textmodel_wordfish |
Wordscores text model | textmodel_wordscores |