Title: | Scaling Models and Classifiers for Textual Data |
---|---|
Description: | Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of 'Laver', 'Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, 'Wordscores' model, the Perry and 'Benoit' (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, and the 'Slapin' and 'Proksch' (2008) <doi:10.1111/j.1540-5907.2008.00338.x> 'wordfish' model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear 'SVMs' specially designed for sparse textual data. |
Authors: | Kenneth Benoit [cre, aut, cph] , Kohei Watanabe [aut] , Haiyan Wang [aut] , Patrick O. Perry [aut] , Benjamin Lauderdale [aut] , Johannes Gruber [aut] , William Lowe [aut] , Vikas Sindhwani [cph] (authored svmlin C++ source code), European Research Council [fnd] (ERC-2011-StG 283794-QUANTESS) |
Maintainer: | Kenneth Benoit <[email protected]> |
License: | GPL-3 |
Version: | 0.9.9 |
Built: | 2024-11-03 06:27:08 UTC |
Source: | CRAN |
Texts of speeches from a no-confidence motion debated in the Irish Dáil from 16-18 October 1991 over the future of the Fianna Fail-Progressive Democrat coalition. (See Laver and Benoit 2002 for details.)
data_corpus_dailnoconf1991
data_corpus_dailnoconf1991
data_corpus_dailnoconf1991
is a corpus with 58 texts,
including docvars for name
, party
, and position
.
https://www.oireachtas.ie/en/debates/debate/dail/1991-10-16/10/
Laver, M. & Benoit, K.R. (2002). Locating TDs in Policy Spaces: Wordscoring Dáil Speeches. Irish Political Studies, 17(1), 59–73.
Laver, M., Benoit, K.R., & Garry, J. (2003). Estimating Policy Positions from Political Text using Words as Data. American Political Science Review, 97(2), 311–331.
## Not run: library("quanteda") data_dfm_dailnoconf1991 <- data_corpus_dailnoconf1991 %>% tokens(remove_punct = TRUE) %>% dfm() tmod <- textmodel_affinity(data_dfm_dailnoconf1991, c("Govt", "Opp", "Opp", rep(NA, 55))) (pred <- predict(tmod)) dat <- data.frame(party = as.character(docvars(data_corpus_dailnoconf1991, "party")), govt = coef(pred)[, "Govt"], position = as.character(docvars(data_corpus_dailnoconf1991, "position"))) bymedian <- with(dat, reorder(paste(party, position), govt, median)) oldpar <- par(no.readonly = TRUE) par(mar = c(5, 6, 4, 2) + .1) boxplot(govt ~ bymedian, data = dat, horizontal = TRUE, las = 1, xlab = "Degree of support for government", ylab = "") abline(h = 7.5, col = "red", lty = "dashed") text(c(0.9, 0.9), c(8.5, 6.5), c("Goverment", "Opposition")) par(oldpar) ## End(Not run)
## Not run: library("quanteda") data_dfm_dailnoconf1991 <- data_corpus_dailnoconf1991 %>% tokens(remove_punct = TRUE) %>% dfm() tmod <- textmodel_affinity(data_dfm_dailnoconf1991, c("Govt", "Opp", "Opp", rep(NA, 55))) (pred <- predict(tmod)) dat <- data.frame(party = as.character(docvars(data_corpus_dailnoconf1991, "party")), govt = coef(pred)[, "Govt"], position = as.character(docvars(data_corpus_dailnoconf1991, "position"))) bymedian <- with(dat, reorder(paste(party, position), govt, median)) oldpar <- par(no.readonly = TRUE) par(mar = c(5, 6, 4, 2) + .1) boxplot(govt ~ bymedian, data = dat, horizontal = TRUE, las = 1, xlab = "Degree of support for government", ylab = "") abline(h = 7.5, col = "red", lty = "dashed") text(c(0.9, 0.9), c(8.5, 6.5), c("Goverment", "Opposition")) par(oldpar) ## End(Not run)
A multilingual text corpus of speeches from a European Parliament debate on coal subsidies in 2010, with individual crowd codings as the unit of observation. The sentences are drawn from officially translated speeches from a debate over a European Parliament debate concerning a Commission report proposing an extension to a regulation permitting state aid to uncompetitive coal mines.
Each speech is available in six languages: English, German, Greek, Italian, Polish and Spanish. The unit of observation is the individual crowd coding of each natural sentence. For more information on the coding approach see Benoit et al. (2016).
data_corpus_EPcoaldebate
data_corpus_EPcoaldebate
The corpus consists of 16,806 documents (i.e. codings of a sentence) and includes the following document-level variables:
character; a unique identifier for each sentence
factor; whether a coder labelled the sentence as "Pro-Subsidy", "Anti-Subsidy" or "Neutral or inapplicable"
factor; the language (translation) of the speech
character; speaker's last name
character; speaker's first name
factor; abbreviation of the EP party group of the speaker
factor; the speaker's country of origin
factor; the speaker's vote on the proposal (For/Against/Abstain/NA)
character; a unique identifier for each crowd coder
numeric; the "trust score" from the Crowdflower platform used to code the sentences, which can theoretically range between 0 and 1. Only coders with trust scores above 0.8 are included in the corpus.
A corpus object.
Benoit, K., Conway, D., Lauderdale, B.E., Laver, M., & Mikhaylov, S. (2016). Crowd-sourced Text Analysis: Reproducible and Agile Production of Political Data. American Political Science Review, 100,(2), 278–295. doi:10.1017/S0003055416000058
Speeches and document-level variables from the debate over the Irish budget of 2010.
data_corpus_irishbudget2010
data_corpus_irishbudget2010
The corpus object for the 2010 budget speeches, with document-level variables for year, debate, serial number, first and last name of the speaker, and the speaker's party.
At the time of the debate, Fianna Fáil (FF) and the Greens formed the government coalition, while Fine Gael (FG), Labour (LAB), and Sinn Féin (SF) were in opposition.
Dáil Éireann Debate, Budget Statement 2010. 9 December 2009. vol. 697, no. 3.
Lowe, W. & Benoit, K.R. (2013). Validating Estimates of Latent Traits From Textual Data Using Human Judgment as a Benchmark. Political Analysis, 21(3), 298–313. doi:10.1093/pan/mpt002.
A corpus object containing 2,000 movie reviews classified by positive or negative sentiment.
data_corpus_moviereviews
data_corpus_moviereviews
The corpus includes the following document variables:
factor indicating whether a review was manually classified as
positive pos
or negative neg
.
Character counting the position in the corpus.
Random number for each review.
For more information, see cat(meta(data_corpus_moviereviews, "readme"))
.
https://www.cs.cornell.edu/people/pabo/movie-review-data/
Pang, B., Lee, L. (2004) "A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts.", Proceedings of the ACL.
# check polarities table(data_corpus_moviereviews$sentiment) # make the data into sentences, because each line is a sentence data_corpus_moviereviewsents <- quanteda::corpus_segment(data_corpus_moviereviews, "\n", extract_pattern = FALSE) print(data_corpus_moviereviewsents, max_ndoc = 3)
# check polarities table(data_corpus_moviereviews$sentiment) # make the data into sentences, because each line is a sentence data_corpus_moviereviewsents <- quanteda::corpus_segment(data_corpus_moviereviews, "\n", extract_pattern = FALSE) print(data_corpus_moviereviewsents, max_ndoc = 3)
textmodel_affinity()
implements the maximum likelihood supervised text
scaling method described in Perry and Benoit (2017).
textmodel_affinity( x, y, exclude = NULL, smooth = 0.5, ref_smooth = 0.5, verbose = quanteda_options("verbose") )
textmodel_affinity( x, y, exclude = NULL, smooth = 0.5, ref_smooth = 0.5, verbose = quanteda_options("verbose") )
x |
the dfm or bootstrap_dfm object on which the model will be fit. Does not need to contain only the training documents, since the index of these will be matched automatically. |
y |
vector of training classes/scores associated with each document
identified in |
exclude |
a set of words to exclude from the model |
smooth |
a smoothing parameter for class affinities; defaults to 0.5 (Jeffreys prior). A plausible alternative would be 1.0 (Laplace prior). |
ref_smooth |
a smoothing parameter for token distributions; defaults to 0.5 |
verbose |
logical; if |
A textmodel_affinity
class list object, with elements:
smooth
a numeric vector of length two for the smoothing parameters smooth
and ref_smooth
x
the input model matrix x
y
the vector of class training labels y
p
a feature class sparse matrix of estimated class affinities
support
logical vector indicating whether a feature was included in computing
class affinities
call
the model call
Patrick Perry and Kenneth Benoit
Perry, P.O. & Benoit, K.R. (2017). Scaling Text with the Class Affinity Model. doi:10.48550/arXiv.1710.08963.
predict.textmodel_affinity()
for methods of applying a
fitted textmodel_affinity()
model object to predict quantities from
(other) documents.
(af <- textmodel_affinity(quanteda::data_dfm_lbgexample, y = c("L", NA, NA, NA, "R", NA))) predict(af) predict(af, newdata = quanteda::data_dfm_lbgexample[6, ]) ## Not run: # compute bootstrapped SEs dfmat <- quanteda::bootstrap_dfm(data_corpus_dailnoconf1991, n = 10, remove_punct = TRUE) textmodel_affinity(dfmat, y = c("Govt", "Opp", "Opp", rep(NA, 55))) ## End(Not run)
(af <- textmodel_affinity(quanteda::data_dfm_lbgexample, y = c("L", NA, NA, NA, "R", NA))) predict(af) predict(af, newdata = quanteda::data_dfm_lbgexample[6, ]) ## Not run: # compute bootstrapped SEs dfmat <- quanteda::bootstrap_dfm(data_corpus_dailnoconf1991, n = 10, remove_punct = TRUE) textmodel_affinity(dfmat, y = c("Govt", "Opp", "Opp", rep(NA, 55))) ## End(Not run)
textmodel_ca
implements correspondence analysis scaling on a
dfm. The method is a fast/sparse version of function
ca.
textmodel_ca(x, smooth = 0, nd = NA, sparse = FALSE, residual_floor = 0.1)
textmodel_ca(x, smooth = 0, nd = NA, sparse = FALSE, residual_floor = 0.1)
x |
the dfm on which the model will be fit |
smooth |
a smoothing parameter for word counts; defaults to zero. |
nd |
Number of dimensions to be included in output; if |
sparse |
retains the sparsity if set to |
residual_floor |
specifies the threshold for the residual matrix for
calculating the truncated svd.Larger value will reduce memory and time cost
but might reduce accuracy; only applicable when |
svds in the RSpectra package is applied to enable the fast computation of the SVD.
textmodel_ca()
returns a fitted CA textmodel that is a special
class of ca object.
You may need to set sparse = TRUE
) and
increase the value of residual_floor
to ignore less important
information and hence to reduce the memory cost when you have a very big
dfm.
If your attempt to fit the model fails due to the matrix being too large,
this is probably because of the memory demands of computing the residual matrix. To avoid this, consider increasing the value of
residual_floor
by 0.1, until the model can be fit.
Kenneth Benoit and Haiyan Wang
Nenadic, O. & Greenacre, M. (2007). Correspondence Analysis in R, with Two- and Three-dimensional Graphics: The ca package. Journal of Statistical Software, 20(3). doi:10.18637/jss.v020.i03
library("quanteda") dfmat <- dfm(tokens(data_corpus_irishbudget2010)) tmod <- textmodel_ca(dfmat) summary(tmod)
library("quanteda") dfmat <- dfm(tokens(data_corpus_irishbudget2010)) tmod <- textmodel_ca(dfmat) summary(tmod)
Fits a fast penalized maximum likelihood estimator to predict discrete categories from sparse dfm objects. Using the glmnet package, the function computes the regularization path for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda. This is done automatically by testing on several folds of the data at estimation time.
textmodel_lr(x, y, ...)
textmodel_lr(x, y, ...)
x |
the dfm on which the model will be fit. Does not need to contain only the training documents. |
y |
vector of training labels associated with each document identified
in |
... |
additional arguments passed to
|
an object of class textmodel_lr
, a list containing:
x
, y
the input model matrix and input training class labels
algorithm
character; the type and family of logistic regression model used in calling
cv.glmnet()
type
the type of associated with algorithm
classnames
the levels of training classes in y
lrfitted
the fitted model object from cv.glmnet()
call
the model call
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software 33(1), 1-22. doi:10.18637/jss.v033.i01
cv.glmnet()
, predict.textmodel_lr()
,
coef.textmodel_lr()
## Example from 13.1 of _An Introduction to Information Retrieval_ library("quanteda") corp <- corpus(c(d1 = "Chinese Beijing Chinese", d2 = "Chinese Chinese Shanghai", d3 = "Chinese Macao", d4 = "Tokyo Japan Chinese", d5 = "London England Chinese", d6 = "Chinese Chinese Chinese Tokyo Japan"), docvars = data.frame(train = factor(c("Y", "Y", "Y", "N", "N", NA)))) dfmat <- dfm(tokens(corp), tolower = FALSE) ## simulate bigger sample as classification on small samples is problematic set.seed(1) dfmat <- dfm_sample(dfmat, 50, replace = TRUE) ## train model (tmod1 <- textmodel_lr(dfmat, docvars(dfmat, "train"))) summary(tmod1) coef(tmod1) ## predict probability and classes predict(tmod1, type = "prob") predict(tmod1)
## Example from 13.1 of _An Introduction to Information Retrieval_ library("quanteda") corp <- corpus(c(d1 = "Chinese Beijing Chinese", d2 = "Chinese Chinese Shanghai", d3 = "Chinese Macao", d4 = "Tokyo Japan Chinese", d5 = "London England Chinese", d6 = "Chinese Chinese Chinese Tokyo Japan"), docvars = data.frame(train = factor(c("Y", "Y", "Y", "N", "N", NA)))) dfmat <- dfm(tokens(corp), tolower = FALSE) ## simulate bigger sample as classification on small samples is problematic set.seed(1) dfmat <- dfm_sample(dfmat, 50, replace = TRUE) ## train model (tmod1 <- textmodel_lr(dfmat, docvars(dfmat, "train"))) summary(tmod1) coef(tmod1) ## predict probability and classes predict(tmod1, type = "prob") predict(tmod1)
Fit the Latent Semantic Analysis scaling model to a dfm,
which may be weighted (for instance using quanteda::dfm_tfidf()
).
textmodel_lsa(x, nd = 10, margin = c("both", "documents", "features"))
textmodel_lsa(x, nd = 10, margin = c("both", "documents", "features"))
x |
the dfm on which the model will be fit |
nd |
the number of dimensions to be included in output |
margin |
margin to be smoothed by the SVD |
svds in the RSpectra package is applied to enable the fast computation of the SVD.
a textmodel_lsa
class object, a list containing:
sk
a numeric vector containing the d values from the SVD
docs
document coordinates from the SVD (u)
features
feature coordinates from the SVD (v)
matrix_low_rank
the multiplication of udv'
data
the input data as a CSparseMatrix from the Matrix package
The number of dimensions nd
retained in LSA is an empirical
issue. While a reduction in can remove much of the noise, keeping
too few dimensions or factors may lose important information.
Haiyan Wang and Kohei Watanabe
Rosario, B. (2000). Latent Semantic Indexing: An Overview. Technical report INFOSYS 240 Spring Paper, University of California, Berkeley.
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., & Harshman, R. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6): 391.
predict.textmodel_lsa()
, coef.textmodel_lsa()
library("quanteda") dfmat <- dfm(tokens(data_corpus_irishbudget2010)) # create an LSA space and return its truncated representation in the low-rank space tmod <- textmodel_lsa(dfmat[1:10, ]) head(tmod$docs) # matrix in low_rank LSA space tmod$matrix_low_rank[,1:5] # fold queries into the space generated by dfmat[1:10,] # and return its truncated versions of its representation in the new low-rank space pred <- predict(tmod, newdata = dfmat[11:14, ]) pred$docs_newspace
library("quanteda") dfmat <- dfm(tokens(data_corpus_irishbudget2010)) # create an LSA space and return its truncated representation in the low-rank space tmod <- textmodel_lsa(dfmat[1:10, ]) head(tmod$docs) # matrix in low_rank LSA space tmod$matrix_low_rank[,1:5] # fold queries into the space generated by dfmat[1:10,] # and return its truncated versions of its representation in the new low-rank space pred <- predict(tmod, newdata = dfmat[11:14, ]) pred$docs_newspace
Fit a multinomial or Bernoulli Naive Bayes model, given a dfm and some training labels.
textmodel_nb( x, y, smooth = 1, prior = c("uniform", "docfreq", "termfreq"), distribution = c("multinomial", "Bernoulli") )
textmodel_nb( x, y, smooth = 1, prior = c("uniform", "docfreq", "termfreq"), distribution = c("multinomial", "Bernoulli") )
x |
the dfm on which the model will be fit. Does not need to contain only the training documents. |
y |
vector of training labels associated with each document identified
in |
smooth |
smoothing parameter for feature counts, added to the feature frequency totals by training class |
prior |
prior distribution on texts; one of |
distribution |
count model for text features, can be |
textmodel_nb()
returns a list consisting of the following (where
is the total number of documents,
is the total number of
features, and
is the total number of training classes):
call |
original function call |
param |
|
x |
the |
y |
the |
distribution |
character; the distribution of |
priors |
numeric; the class prior probabilities |
smooth |
numeric; the value of the smoothing parameter |
Prior distributions refer to the prior probabilities assigned to the training classes, and the choice of prior distribution affects the calculation of the fitted probabilities. The default is uniform priors, which sets the unconditional probability of observing the one class to be the same as observing any other class.
"Document frequency" means that the class priors will be taken from the relative proportions of the class documents used in the training set. This approach is so common that it is assumed in many examples, such as the worked example from Manning, Raghavan, and Schütze (2008) below. It is not the default in quanteda, however, since there may be nothing informative in the relative numbers of documents used to train a classifier other than the relative availability of the documents. When training classes are balanced in their number of documents (usually advisable), however, then the empirically computed "docfreq" would be equivalent to "uniform" priors.
Setting prior
to "termfreq" makes the priors equal to the proportions of
total feature counts found in the grouped documents in each training class,
so that the classes with the largest number of features are assigned the
largest priors. If the total count of features in each training class was
the same, then "uniform" and "termfreq" would be the same.
The smooth
value is added to the feature frequencies, aggregated by
training class, to avoid zero frequencies in any class. This has the
effect of giving more weight to infrequent term occurrences.
Kenneth Benoit
Manning, C.D., Raghavan, P., & Schütze, H. (2008). An Introduction to Information Retrieval. Cambridge: Cambridge University Press (Chapter 13). Available at https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf.
Jurafsky, D. & Martin, J.H. (2018). From Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Draft of September 23, 2018 (Chapter 6, Naive Bayes). Available at https://web.stanford.edu/~jurafsky/slp3/.
## Example from 13.1 of _An Introduction to Information Retrieval_ library("quanteda") txt <- c(d1 = "Chinese Beijing Chinese", d2 = "Chinese Chinese Shanghai", d3 = "Chinese Macao", d4 = "Tokyo Japan Chinese", d5 = "Chinese Chinese Chinese Tokyo Japan") x <- dfm(tokens(txt), tolower = FALSE) y <- factor(c("Y", "Y", "Y", "N", NA), ordered = TRUE) ## replicate IIR p261 prediction for test set (document 5) (tmod1 <- textmodel_nb(x, y, prior = "docfreq")) summary(tmod1) coef(tmod1) predict(tmod1, type = "prob") predict(tmod1) # contrast with other priors predict(textmodel_nb(x, y, prior = "uniform")) predict(textmodel_nb(x, y, prior = "termfreq")) ## replicate IIR p264 Bernoulli Naive Bayes tmod2 <- textmodel_nb(x, y, distribution = "Bernoulli", prior = "docfreq") predict(tmod2, newdata = x[5, ], type = "prob") predict(tmod2, newdata = x[5, ])
## Example from 13.1 of _An Introduction to Information Retrieval_ library("quanteda") txt <- c(d1 = "Chinese Beijing Chinese", d2 = "Chinese Chinese Shanghai", d3 = "Chinese Macao", d4 = "Tokyo Japan Chinese", d5 = "Chinese Chinese Chinese Tokyo Japan") x <- dfm(tokens(txt), tolower = FALSE) y <- factor(c("Y", "Y", "Y", "N", NA), ordered = TRUE) ## replicate IIR p261 prediction for test set (document 5) (tmod1 <- textmodel_nb(x, y, prior = "docfreq")) summary(tmod1) coef(tmod1) predict(tmod1, type = "prob") predict(tmod1) # contrast with other priors predict(textmodel_nb(x, y, prior = "uniform")) predict(textmodel_nb(x, y, prior = "termfreq")) ## replicate IIR p264 Bernoulli Naive Bayes tmod2 <- textmodel_nb(x, y, distribution = "Bernoulli", prior = "docfreq") predict(tmod2, newdata = x[5, ], type = "prob") predict(tmod2, newdata = x[5, ])
Fit a fast linear SVM classifier for texts, using the LiblineaR package.
textmodel_svm( x, y, weight = c("uniform", "docfreq", "termfreq"), type = 1, ... )
textmodel_svm( x, y, weight = c("uniform", "docfreq", "termfreq"), type = 1, ... )
x |
the dfm on which the model will be fit. Does not need to contain only the training documents. |
y |
vector of training labels associated with each document identified
in |
weight |
weights for different classes for imbalanced training sets,
passed to |
type |
argument passed to the |
... |
additional arguments passed to |
an object of class textmodel_svm
, a list containing:
x
, y
, weights
, type
: argument values from the call parameters
algorithm
character label of the algorithm used in the call to
LiblineaR::LiblineaR()
classnames
levels of y
bias
the value of Bias
returned from LiblineaR::LiblineaR()
svmlinfitted
the fitted model object passed from the call to
LiblineaR::LiblineaR()]
call
the model call
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. (2008) LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research 9: 1871-1874. https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
LiblineaR::LiblineaR()
predict.textmodel_svm()
# use party leaders for govt and opposition classes library("quanteda") docvars(data_corpus_irishbudget2010, "govtopp") <- c(rep(NA, 4), "Gov", "Opp", NA, "Opp", NA, NA, NA, NA, NA, NA) dfmat <- dfm(tokens(data_corpus_irishbudget2010)) tmod <- textmodel_svm(dfmat, y = dfmat$govtopp) predict(tmod) # multiclass problem - all party leaders tmod2 <- textmodel_svm(dfmat, y = c(rep(NA, 3), "SF", "FF", "FG", NA, "LAB", NA, NA, "Green", rep(NA, 3))) predict(tmod2)
# use party leaders for govt and opposition classes library("quanteda") docvars(data_corpus_irishbudget2010, "govtopp") <- c(rep(NA, 4), "Gov", "Opp", NA, "Opp", NA, NA, NA, NA, NA, NA) dfmat <- dfm(tokens(data_corpus_irishbudget2010)) tmod <- textmodel_svm(dfmat, y = dfmat$govtopp) predict(tmod) # multiclass problem - all party leaders tmod2 <- textmodel_svm(dfmat, y = c(rep(NA, 3), "SF", "FF", "FG", NA, "LAB", NA, NA, "Green", rep(NA, 3))) predict(tmod2)
Estimate Slapin and Proksch's (2008) "wordfish" Poisson scaling model of one-dimensional document positions using conditional maximum likelihood.
textmodel_wordfish( x, dir = c(1, 2), priors = c(Inf, Inf, 3, 1), tol = c(1e-06, 1e-08), dispersion = c("poisson", "quasipoisson"), dispersion_level = c("feature", "overall"), dispersion_floor = 0, abs_err = FALSE, residual_floor = 0.5 )
textmodel_wordfish( x, dir = c(1, 2), priors = c(Inf, Inf, 3, 1), tol = c(1e-06, 1e-08), dispersion = c("poisson", "quasipoisson"), dispersion_level = c("feature", "overall"), dispersion_floor = 0, abs_err = FALSE, residual_floor = 0.5 )
x |
the dfm on which the model will be fit |
dir |
set global identification by specifying the indexes for a pair of
documents such that |
priors |
prior precisions for the estimated parameters |
tol |
tolerances for convergence. The first value is a convergence threshold for the log-posterior of the model, the second value is the tolerance in the difference in parameter values from the iterative conditional maximum likelihood (from conditionally estimating document-level, then feature-level parameters). |
dispersion |
sets whether a quasi-Poisson quasi-likelihood should be
used based on a single dispersion parameter ( |
dispersion_level |
sets the unit level for the dispersion parameter,
options are |
dispersion_floor |
constraint for the minimal underdispersion multiplier
in the quasi-Poisson model. Used to minimize the distorting effect of
terms with rare term or document frequencies that appear to be severely
underdispersed. Default is 0, but this only applies if |
abs_err |
specifies how the convergence is considered |
residual_floor |
specifies the threshold for residual matrix when
calculating the svds, only applies when |
The returns match those of Will Lowe's R implementation of
wordfish
(see the austin package), except that here we have renamed
words
to be features
. (This return list may change.) We
have also followed the practice begun with Slapin and Proksch's early
implementation of the model that used a regularization parameter of
se, through the third element in
priors
.
An object of class textmodel_fitted_wordfish
. This is a list
containing:
dir |
global identification of the dimension |
theta |
estimated document positions |
alpha |
estimated document fixed effects |
beta |
estimated feature marginal effects |
psi |
estimated word fixed effects |
docs |
document labels |
features |
feature labels |
sigma |
regularization parameter for betas in Poisson form |
ll |
log likelihood at convergence |
se.theta |
standard errors for theta-hats |
x |
dfm to which the model was fit |
In the rare situation where a warning message of "The algorithm did not converge." shows up, removing some documents may work.
Benjamin Lauderdale, Haiyan Wang, and Kenneth Benoit
Slapin, J. & Proksch, S.O. (2008). A Scaling Model for Estimating Time-Series Party Positions from Texts. doi:10.1111/j.1540-5907.2008.00338.x. American Journal of Political Science, 52(3), 705–772.
Lowe, W. & Benoit, K.R. (2013). Validating Estimates of Latent Traits from Textual Data Using Human Judgment as a Benchmark. doi:10.1093/pan/mpt002. Political Analysis, 21(3), 298–313.
(tmod1 <- textmodel_wordfish(quanteda::data_dfm_lbgexample, dir = c(1,5))) summary(tmod1, n = 10) coef(tmod1) predict(tmod1) predict(tmod1, se.fit = TRUE) predict(tmod1, interval = "confidence") ## Not run: library("quanteda") dfmat <- dfm(tokens(data_corpus_irishbudget2010)) (tmod2 <- textmodel_wordfish(dfmat, dir = c(6,5))) (tmod3 <- textmodel_wordfish(dfmat, dir = c(6,5), dispersion = "quasipoisson", dispersion_floor = 0)) (tmod4 <- textmodel_wordfish(dfmat, dir = c(6,5), dispersion = "quasipoisson", dispersion_floor = .5)) plot(tmod3$phi, tmod4$phi, xlab = "Min underdispersion = 0", ylab = "Min underdispersion = .5", xlim = c(0, 1.0), ylim = c(0, 1.0)) plot(tmod3$phi, tmod4$phi, xlab = "Min underdispersion = 0", ylab = "Min underdispersion = .5", xlim = c(0, 1.0), ylim = c(0, 1.0), type = "n") underdispersedTerms <- sample(which(tmod3$phi < 1.0), 5) which(featnames(dfmat) %in% names(topfeatures(dfmat, 20))) text(tmod3$phi, tmod4$phi, tmod3$features, cex = .8, xlim = c(0, 1.0), ylim = c(0, 1.0), col = "grey90") text(tmod3$phi['underdispersedTerms'], tmod4$phi['underdispersedTerms'], tmod3$features['underdispersedTerms'], cex = .8, xlim = c(0, 1.0), ylim = c(0, 1.0), col = "black") if (requireNamespace("austin")) { tmod5 <- austin::wordfish(quanteda::as.wfm(dfmat), dir = c(6, 5)) cor(tmod1$theta, tmod5$theta) } ## End(Not run)
(tmod1 <- textmodel_wordfish(quanteda::data_dfm_lbgexample, dir = c(1,5))) summary(tmod1, n = 10) coef(tmod1) predict(tmod1) predict(tmod1, se.fit = TRUE) predict(tmod1, interval = "confidence") ## Not run: library("quanteda") dfmat <- dfm(tokens(data_corpus_irishbudget2010)) (tmod2 <- textmodel_wordfish(dfmat, dir = c(6,5))) (tmod3 <- textmodel_wordfish(dfmat, dir = c(6,5), dispersion = "quasipoisson", dispersion_floor = 0)) (tmod4 <- textmodel_wordfish(dfmat, dir = c(6,5), dispersion = "quasipoisson", dispersion_floor = .5)) plot(tmod3$phi, tmod4$phi, xlab = "Min underdispersion = 0", ylab = "Min underdispersion = .5", xlim = c(0, 1.0), ylim = c(0, 1.0)) plot(tmod3$phi, tmod4$phi, xlab = "Min underdispersion = 0", ylab = "Min underdispersion = .5", xlim = c(0, 1.0), ylim = c(0, 1.0), type = "n") underdispersedTerms <- sample(which(tmod3$phi < 1.0), 5) which(featnames(dfmat) %in% names(topfeatures(dfmat, 20))) text(tmod3$phi, tmod4$phi, tmod3$features, cex = .8, xlim = c(0, 1.0), ylim = c(0, 1.0), col = "grey90") text(tmod3$phi['underdispersedTerms'], tmod4$phi['underdispersedTerms'], tmod3$features['underdispersedTerms'], cex = .8, xlim = c(0, 1.0), ylim = c(0, 1.0), col = "black") if (requireNamespace("austin")) { tmod5 <- austin::wordfish(quanteda::as.wfm(dfmat), dir = c(6, 5)) cor(tmod1$theta, tmod5$theta) } ## End(Not run)
textmodel_wordscores
implements Laver, Benoit and Garry's (2003)
"Wordscores" method for scaling texts on a single dimension, given a set of
anchoring or reference texts whose values are set through reference
scores. This scale can be fitted in the linear space (as per LBG 2003) or in
the logit space (as per Beauchamp 2012). Estimates of virgin or
unknown texts are obtained using the predict()
method to score
documents from a fitted textmodel_wordscores
object.
textmodel_wordscores(x, y, scale = c("linear", "logit"), smooth = 0)
textmodel_wordscores(x, y, scale = c("linear", "logit"), smooth = 0)
x |
the dfm on which the model will be trained |
y |
vector of training scores associated with each document
in |
scale |
scale on which to score the words; |
smooth |
a smoothing parameter for word counts; defaults to zero to match the LBG (2003) method. See Value below for additional information on the behaviour of this argument. |
The textmodel_wordscores()
function and the associated
predict()
method are designed
to function in the same manner as stats::predict.lm()
.
coef()
can also be used to extract the word coefficients from the
fitted textmodel_wordscores
object, and summary()
will print
a nice summary of the fitted object.
A fitted textmodel_wordscores
object. This object will
contain a copy of the input data, but in its original form without any
smoothing applied. Calling predict.textmodel_wordscores()
on
this object without specifying a value for newdata
, for instance,
will predict on the unsmoothed object. This behaviour differs from
versions of quanteda <= 1.2.
Kenneth Benoit
Laver, M., Benoit, K.R., & Garry, J. (2003). Estimating Policy Positions from Political Text using Words as Data. American Political Science Review, 97(2), 311–331.
Beauchamp, N. (2012). Using Text to Scale Legislatures with Uninformative Voting. New York University Mimeo.
Martin, L.W. & Vanberg, G. (2007). A Robust Transformation Procedure for Interpreting Political Text. Political Analysis 16(1), 93–100. doi:10.1093/pan/mpm010
predict.textmodel_wordscores()
for methods of applying a
fitted textmodel_wordscores model object to predict quantities from
(other) documents.
(tmod <- textmodel_wordscores(quanteda::data_dfm_lbgexample, y = c(seq(-1.5, 1.5, .75), NA))) summary(tmod) coef(tmod) predict(tmod) predict(tmod, rescaling = "lbg") predict(tmod, se.fit = TRUE, interval = "confidence", rescaling = "mv")
(tmod <- textmodel_wordscores(quanteda::data_dfm_lbgexample, y = c(seq(-1.5, 1.5, .75), NA))) summary(tmod) coef(tmod) predict(tmod) predict(tmod, rescaling = "lbg") predict(tmod, se.fit = TRUE, interval = "confidence", rescaling = "mv")