Package: subsampling 0.1.1

Qingkai Dong

subsampling: Optimal Subsampling Methods for Statistical Models

Balancing computational and statistical efficiency, subsampling techniques offer a practical solution for handling large-scale data analysis. Subsampling methods enhance statistical modeling for massive datasets by efficiently drawing representative subsamples from full dataset based on tailored sampling probabilities. These probabilities are optimized for specific goals, such as minimizing the variance of coefficient estimates or reducing prediction error.

Authors:Qingkai Dong [aut, cre, cph], Yaqiong Yao [aut], Haiying Wang [aut], Qiang Zhang [ctb], Jun Yan [ctb]

subsampling_0.1.1.tar.gz
subsampling_0.1.1.tar.gz(r-4.5-noble)subsampling_0.1.1.tar.gz(r-4.4-noble)
subsampling_0.1.1.tgz(r-4.4-emscripten)subsampling_0.1.1.tgz(r-4.3-emscripten)
subsampling.pdf |subsampling.html
subsampling/json (API)
NEWS

# Install 'subsampling' in R:
install.packages('subsampling', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/dqksnow/subsampling/issues0 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

openblascpp

3.30 score 541 downloads 4 exports 16 dependencies

Last updated 5 months agofrom:897268b17f. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-linux-x86_64OKMar 06 2025
R-4.4-linux-x86_64OKMar 06 2025

Exports:ssp.glmssp.quantregssp.relogitssp.softmax

Dependencies:DBIexpmlatticeMASSMatrixMatrixModelsminqamitoolsnnetnumDerivquantregRcppRcppArmadilloSparseMsurveysurvival

Introduction to ssp.glm: Subsampling for Generalized Linear Models

Rendered fromssp-logit.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-11-05
Started: 2024-11-05

Introduction to ssp.quantreg: Subsampling for Quantile Regression

Rendered fromssp-quantreg.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-11-05
Started: 2024-11-05

Introduction to ssp.relogit: Subsampling for Logistic Regression Model with Rare Events

Rendered fromssp-relogit.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-11-05
Started: 2024-11-05

Introduction to ssp.softmax: Subsampling for Softmax (Multinomial) Regression Model

Rendered fromssp-softmax.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-11-05
Started: 2024-11-05

Citation

To cite package ‘subsampling’ in publications use:

Dong Q, Yao Y, Wang H (2024). subsampling: Optimal Subsampling Methods for Statistical Models. R package version 0.1.1, https://CRAN.R-project.org/package=subsampling.

Corresponding BibTeX entry:

  @Manual{,
    title = {subsampling: Optimal Subsampling Methods for Statistical
      Models},
    author = {Qingkai Dong and Yaqiong Yao and Haiying Wang},
    year = {2024},
    note = {R package version 0.1.1},
    url = {https://CRAN.R-project.org/package=subsampling},
  }

Readme and manuals

subsampling

A major challenge in big data statistical analysis is the demand for computing resources. For example, when fitting a logistic regression model to binary response variable with $N \times d$ dimensional covariates, the computational complexity of estimating the coefficients using the IRLS algorithm is $O(\zeta N d^2)$, where $\zeta$ is the number of iteriation. When $N$ is large, the cost can be prohibitive, especially if high performance computing resources are unavailable. Subsampling has become a widely used technique to balance the trade-off between computational efficiency and statistical efficiency.

The R package subsampling provides optimal subsampling methods for various statistical models such as generalized linear models (GLM), softmax (multinomial) regression, rare event logistic regression and quantile regression model. Specialized subsampling techniques are provided to address specific challenges across different models and datasets.

Installation

You can install the development version of subsampling from GitHub with:

# install.packages("devtools")
devtools::install_github("dqksnow/subsampling")

Getting Started

The Online document provides a guidance for quick start.

Example

This is an example of subsampling method on logistic regression:

library(subsampling)
set.seed(1)
N <- 1e4
beta0 <- rep(-0.5, 7)
d <- length(beta0) - 1
corr <- 0.5
sigmax  <- matrix(corr, d, d) + diag(1-corr, d)
X <- MASS::mvrnorm(N, rep(0, d), sigmax)
colnames(X) <- paste("V", 1:ncol(X), sep = "")
P <- 1 - 1 / (1 + exp(beta0[1] + X %*% beta0[-1]))
Y <- rbinom(N, 1, P)
data <- as.data.frame(cbind(Y, X))
formula <- Y ~ .
n.plt <- 200
n.ssp <- 600
ssp.results <- ssp.glm(formula = formula,
                       data = data,
                       n.plt = n.plt,
                       n.ssp = n.ssp,
                       family = "quasibinomial",
                       criterion = "optL",
                       sampling.method = "poisson",
                       likelihood = "weighted"
                       )
summary(ssp.results)
#> Model Summary
#> 
#> Call:
#> 
#> ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, 
#>     family = "quasibinomial", criterion = "optL", sampling.method = "poisson", 
#>     likelihood = "weighted")
#> 
#> Subsample Size:
#>                                
#> 1       Total Sample Size 10000
#> 2 Expected Subsample Size   600
#> 3   Actual Subsample Size   635
#> 4   Unique Subsample Size   635
#> 5  Expected Subample Rate    6%
#> 6    Actual Subample Rate 6.35%
#> 7    Unique Subample Rate 6.35%
#> 
#> Coefficients:
#> 
#>           Estimate Std. Error z value Pr(>|z|)
#> Intercept  -0.4149     0.0803 -5.1694  <0.0001
#> V1         -0.5874     0.0958 -6.1286  <0.0001
#> V2         -0.4723     0.1086 -4.3499  <0.0001
#> V3         -0.5492     0.1014 -5.4164  <0.0001
#> V4         -0.4044     0.1012 -3.9950  <0.0001
#> V5         -0.3725     0.1045 -3.5649   0.0004
#> V6         -0.6703     0.0973 -6.8859  <0.0001