Title: | Optimal Subsampling Methods for Statistical Models |
---|---|
Description: | Balancing computational and statistical efficiency, subsampling techniques offer a practical solution for handling large-scale data analysis. Subsampling methods enhance statistical modeling for massive datasets by efficiently drawing representative subsamples from full dataset based on tailored sampling probabilities. These probabilities are optimized for specific goals, such as minimizing the variance of coefficient estimates or reducing prediction error. |
Authors: | Qingkai Dong [aut, cre, cph], Yaqiong Yao [aut], Haiying Wang [aut], Qiang Zhang [ctb], Jun Yan [ctb] |
Maintainer: | Qingkai Dong <[email protected]> |
License: | GPL-3 |
Version: | 0.1.1 |
Built: | 2024-11-06 09:40:31 UTC |
Source: | CRAN |
Draw subsample from full dataset and fit a generalized linear model (GLM) on the subsample. For a quick start, refer to the vignette.
ssp.glm( formula, data, subset = NULL, n.plt, n.ssp, family = "binomial", criterion = "optL", sampling.method = "poisson", likelihood = "weighted", control = list(...), contrasts = NULL, ... )
ssp.glm( formula, data, subset = NULL, n.plt, n.ssp, family = "binomial", criterion = "optL", sampling.method = "poisson", likelihood = "weighted", control = list(...), contrasts = NULL, ... )
formula |
A model formula object of class "formula" that describes the model to be fitted. |
data |
A data frame containing the variables in the model. Denote |
subset |
An optional vector specifying a subset of observations from |
n.plt |
The pilot subsample size (first-step subsample size). This subsample is used to compute the pilot estimator and estimate the optimal subsampling probabilities. |
n.ssp |
The expected size of the optimal subsample (second-step subsample). For |
family |
|
criterion |
The choices include
|
sampling.method |
The sampling method to use. Options include Differences between methods:
|
likelihood |
The likelihood function to use. Options include
|
control |
The argument
|
contrasts |
An optional list. It specifies how categorical variables are represented in the design matrix. For example, |
... |
A list of parameters which will be passed to |
A pilot estimator for the unknown parameter is required because both optA and
optL subsampling probabilities depend on
. There is no "free lunch" when determining optimal subsampling probabilities. Fortunately the
pilot estimator only needs to satisfy mild conditions. For logistic regression, this
is achieved by drawing a size
n.plt
subsample with replacement from full
dataset. The case-control subsample probability is applied, that is, for
and
for
,
, where
and
are the counts of observations with
and
, respectively. For other
families, uniform subsampling probabilities are applied. Typically,
n.plt
is
relatively small compared to n.ssp
.
When criterion = 'uniform'
, there is no need to compute the pilot estimator. In this case, a size n.plt + n.ssp
subsample will be drawn with uniform sampling probability and coef
is the corresponding estimator.
As suggested by survey::svyglm()
, for binomial and poisson families, use family=quasibinomial()
and family=quasipoisson()
to avoid a warning "In eval(family$initialize) : non-integer #successes in a binomial glm!". The quasi versions of the family objects give the same point estimates and suppress the warning. Since subsampling methods only rely on point estimates from svyglm() for further computation, using the quasi families does not introduce any issues.
For Gamma family, ssp.glm
returns only the estimation of coefficients, as the dispersion parameter is not estimated.
ssp.glm
returns an object of class "ssp.glm" containing the following components (some are optional):
The original function call.
The pilot estimator. See Details for more information.
The estimator obtained from the optimal subsample.
The weighted linear combination of coef.plt
and coef.ssp
. The combination weights depend on the relative size of n.plt
and n.ssp
and the estimated covariance matrices of coef.plt
and coef.ssp.
We blend the pilot subsample information into optimal subsample estimator since the pilot subsample has already been drawn. The coefficients and standard errors reported by summary are coef
and the square root of diag(cov)
.
The covariance matrix of coef.ssp
.
The covariance matrix of coef
.
Row indices of pilot subsample in the full dataset.
Row indices of of optimal subsample in the full dataset.
The number of observations in the full dataset.
The expected subsample size, equals to n.ssp
for ssp.glm.
Note that for other functions, such as ssp.relogit, this value may differ.
The terms object for the fitted model.
Wang, H. (2019). More efficient estimation for logistic regression with optimal subsamples. Journal of machine learning research, 20(132), 1-59.
Ai, M., Yu, J., Zhang, H., & Wang, H. (2021). Optimal subsampling algorithms for big data regressions. Statistica Sinica, 31(2), 749-772.
Wang, H., & Kim, J. K. (2022). Maximum sampled conditional likelihood for informative subsampling. Journal of machine learning research, 23(332), 1-50.
# logistic regression set.seed(2) N <- 1e4 beta0 <- rep(-0.5, 7) d <- length(beta0) - 1 corr <- 0.5 sigmax <- matrix(corr, d, d) + diag(1-corr, d) X <- MASS::mvrnorm(N, rep(0, d), sigmax) Y <- rbinom(N, 1, 1 - 1 / (1 + exp(beta0[1] + X %*% beta0[-1]))) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . n.plt <- 500 n.ssp <- 1000 subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'quasibinomial', criterion = "optL", sampling.method = 'poisson', likelihood = "logOddsCorrection") summary(subsampling.results) subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'quasibinomial', criterion = "optL", sampling.method = 'withReplacement', likelihood = "weighted") summary(subsampling.results) Uni.subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'quasibinomial', criterion = 'uniform') summary(Uni.subsampling.results) #################### # poisson regression set.seed(1) N <- 1e4 beta0 <- rep(0.5, 7) d <- length(beta0) - 1 X <- matrix(runif(N * d), N, d) epsilon <- runif(N) lambda <- exp(beta0[1] + X %*% beta0[-1]) Y <- rpois(N, lambda) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . n.plt <- 200 n.ssp <- 600 subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'poisson', criterion = "optL", sampling.method = 'poisson', likelihood = "weighted") summary(subsampling.results) subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'poisson', criterion = "optL", sampling.method = 'withReplacement', likelihood = "weighted") summary(subsampling.results) Uni.subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'poisson', criterion = 'uniform') summary(Uni.subsampling.results) ################## # gamma regression set.seed(1) N <- 1e4 p <- 3 beta0 <- rep(0.5, p + 1) d <- length(beta0) - 1 shape <- 2 X <- matrix(runif(N * d), N, d) link_function <- function(X, beta0) 1 / (beta0[1] + X %*% beta0[-1]) scale <- link_function(X, beta0) / shape Y <- rgamma(N, shape = shape, scale = scale) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . n.plt <- 200 n.ssp <- 1000 subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'Gamma', criterion = "optL", sampling.method = 'poisson', likelihood = "weighted") summary(subsampling.results)
# logistic regression set.seed(2) N <- 1e4 beta0 <- rep(-0.5, 7) d <- length(beta0) - 1 corr <- 0.5 sigmax <- matrix(corr, d, d) + diag(1-corr, d) X <- MASS::mvrnorm(N, rep(0, d), sigmax) Y <- rbinom(N, 1, 1 - 1 / (1 + exp(beta0[1] + X %*% beta0[-1]))) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . n.plt <- 500 n.ssp <- 1000 subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'quasibinomial', criterion = "optL", sampling.method = 'poisson', likelihood = "logOddsCorrection") summary(subsampling.results) subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'quasibinomial', criterion = "optL", sampling.method = 'withReplacement', likelihood = "weighted") summary(subsampling.results) Uni.subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'quasibinomial', criterion = 'uniform') summary(Uni.subsampling.results) #################### # poisson regression set.seed(1) N <- 1e4 beta0 <- rep(0.5, 7) d <- length(beta0) - 1 X <- matrix(runif(N * d), N, d) epsilon <- runif(N) lambda <- exp(beta0[1] + X %*% beta0[-1]) Y <- rpois(N, lambda) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . n.plt <- 200 n.ssp <- 600 subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'poisson', criterion = "optL", sampling.method = 'poisson', likelihood = "weighted") summary(subsampling.results) subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'poisson', criterion = "optL", sampling.method = 'withReplacement', likelihood = "weighted") summary(subsampling.results) Uni.subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'poisson', criterion = 'uniform') summary(Uni.subsampling.results) ################## # gamma regression set.seed(1) N <- 1e4 p <- 3 beta0 <- rep(0.5, p + 1) d <- length(beta0) - 1 shape <- 2 X <- matrix(runif(N * d), N, d) link_function <- function(X, beta0) 1 / (beta0[1] + X %*% beta0[-1]) scale <- link_function(X, beta0) / shape Y <- rgamma(N, shape = shape, scale = scale) data <- as.data.frame(cbind(Y, X)) formula <- Y ~ . n.plt <- 200 n.ssp <- 1000 subsampling.results <- ssp.glm(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, family = 'Gamma', criterion = "optL", sampling.method = 'poisson', likelihood = "weighted") summary(subsampling.results)
Draw subsample from full dataset and fit quantile regression model. For a quick start, refer to the vignette.
ssp.quantreg( formula, data, subset = NULL, tau = 0.5, n.plt, n.ssp, B = 5, boot = TRUE, criterion = "optL", sampling.method = "withReplacement", likelihood = c("weighted"), control = list(...), contrasts = NULL, ... )
ssp.quantreg( formula, data, subset = NULL, tau = 0.5, n.plt, n.ssp, B = 5, boot = TRUE, criterion = "optL", sampling.method = "withReplacement", likelihood = c("weighted"), control = list(...), contrasts = NULL, ... )
formula |
A model formula object of class "formula" that describes the model to be fitted. |
data |
A data frame containing the variables in the model. Denote |
subset |
An optional vector specifying a subset of observations from |
tau |
The interested quantile. |
n.plt |
The pilot subsample size (first-step subsample size). This subsample is used to compute the pilot estimator and estimate the optimal subsampling probabilities. |
n.ssp |
The expected size of the optimal subsample (second-step subsample). For |
B |
The number of subsamples for the iterative sampling algorithm. Each subsample contains |
boot |
If TRUE then perform iterative sampling algorithm and estimate the covariance matrix. If FALSE then only one subsample with size |
criterion |
It determines how subsampling probabilities are computed.
Choices include
|
sampling.method |
The sampling method for drawing the optimal subsample.
Choices include |
likelihood |
The type of the maximum likelihood function used to
calculate the optimal subsampling estimator. Currently |
control |
The argument
|
contrasts |
An optional list. It specifies how categorical variables are represented in the design matrix. For example, |
... |
A list of parameters which will be passed to |
Most of the arguments and returned variables have the same meaning with ssp.glm. Refer to vignette
A pilot estimator for the unknown parameter is required because
optL subsampling probabilities depend on
. There is no "free lunch" when determining optimal subsampling probabilities. For quantile regression, this
is achieved by drawing a size
n.plt
subsample with replacement from full
dataset, using uniform sampling probability.
If boot
=TRUE, the returned value subsample.size.expect
equals to B*n.ssp
, and the covariance matrix for coef
would be calculated.
If boot
=FALSE, the returned value subsample.size.expect
equals to B*n.ssp
, but the covariance matrix won't be estimated.
ssp.quantreg
returns an object of class "ssp.quantreg" containing the following components (some are optional):
The original function call.
The pilot estimator. See Details for more information.
The estimator obtained from the optimal subsample.
The covariance matrix of coef
Row indices of pilot subsample in the full dataset.
Row indices of of optimal subsample in the full dataset.
The number of observations in the full dataset.
The expected subsample size
The terms object for the fitted model.
Wang, H., & Ma, Y. (2021). Optimal subsampling for quantile regression in big data. Biometrika, 108(1), 99-112.
#quantile regression set.seed(1) N <- 1e4 B <- 5 tau <- 0.75 beta.true <- rep(1, 7) d <- length(beta.true) - 1 corr <- 0.5 sigmax <- matrix(0, d, d) for (i in 1:d) for (j in 1:d) sigmax[i, j] <- corr^(abs(i-j)) X <- MASS::mvrnorm(N, rep(0, d), sigmax) err <- rnorm(N, 0, 1) - qnorm(tau) Y <- beta.true[1] + X %*% beta.true[-1] + err * rowMeans(abs(X)) data <- as.data.frame(cbind(Y, X)) colnames(data) <- c("Y", paste("V", 1:ncol(X), sep="")) formula <- Y ~ . n.plt <- 200 n.ssp <- 100 optL.results <- ssp.quantreg(formula,data,tau = tau,n.plt = n.plt, n.ssp = n.ssp,B = B,boot = TRUE,criterion = 'optL', sampling.method = 'withReplacement',likelihood = 'weighted') summary(optL.results) uni.results <- ssp.quantreg(formula,data,tau = tau,n.plt = n.plt, n.ssp = n.ssp,B = B,boot = TRUE,criterion = 'uniform', sampling.method = 'withReplacement', likelihood = 'weighted') summary(uni.results)
#quantile regression set.seed(1) N <- 1e4 B <- 5 tau <- 0.75 beta.true <- rep(1, 7) d <- length(beta.true) - 1 corr <- 0.5 sigmax <- matrix(0, d, d) for (i in 1:d) for (j in 1:d) sigmax[i, j] <- corr^(abs(i-j)) X <- MASS::mvrnorm(N, rep(0, d), sigmax) err <- rnorm(N, 0, 1) - qnorm(tau) Y <- beta.true[1] + X %*% beta.true[-1] + err * rowMeans(abs(X)) data <- as.data.frame(cbind(Y, X)) colnames(data) <- c("Y", paste("V", 1:ncol(X), sep="")) formula <- Y ~ . n.plt <- 200 n.ssp <- 100 optL.results <- ssp.quantreg(formula,data,tau = tau,n.plt = n.plt, n.ssp = n.ssp,B = B,boot = TRUE,criterion = 'optL', sampling.method = 'withReplacement',likelihood = 'weighted') summary(optL.results) uni.results <- ssp.quantreg(formula,data,tau = tau,n.plt = n.plt, n.ssp = n.ssp,B = B,boot = TRUE,criterion = 'uniform', sampling.method = 'withReplacement', likelihood = 'weighted') summary(uni.results)
Draw subsample from full dataset and fit logistic regression model on subsample. For a quick start, refer to the vignette.
ssp.relogit( formula, data, subset = NULL, n.plt, n.ssp, criterion = "optL", likelihood = "logOddsCorrection", control = list(...), contrasts = NULL, ... )
ssp.relogit( formula, data, subset = NULL, n.plt, n.ssp, criterion = "optL", likelihood = "logOddsCorrection", control = list(...), contrasts = NULL, ... )
formula |
A model formula object of class "formula" that describes the model to be fitted. |
data |
A data frame containing the variables in the model. Denote |
subset |
An optional vector specifying a subset of observations from |
n.plt |
The pilot subsample size (first-step subsample size). This subsample is used to compute the pilot estimator and estimate the optimal subsampling probabilities. |
n.ssp |
The expected subsample size (the second-step subsample
size) drawn from those samples with |
criterion |
The choices include
|
likelihood |
The likelihood function to use. Options include
|
control |
The argument
|
contrasts |
An optional list. It specifies how categorical variables are represented in the design matrix. For example, |
... |
A list of parameters which will be passed to |
'Rare event' stands for the number of observations where is rare compare to the number of
in the full data. In the face of logistic regression with rare events, @wang2021nonuniform shows that the available information ties to the number of positive instances instead of the full data size. Based on this insight, one can keep all the rare instances and perform subsampling on the non-rare instances to reduce the computational cost. When
criterion = optA, optL or LCC
, all observations with are preserved and it draw
n.ssp
subsmples from observations with Y=0. When criterion = uniform
, it draws (n.plt+n.ssp) subsmples from the full sample with equal sampling probability.
A pilot estimator for the unknown parameter is required because both optA and
optL subsampling probabilities depend on
. This
is achieved by drawing half size subsample from rare observations and half from non-rare observations.
Most of the arguments and returned variables have similar meaning with ssp.glm. Refer to vignette
ssp.relogit
returns an object of class "ssp.relogit" containing the following components (some are optional):
The original function call.
The pilot estimator. See Details for more information.
The estimator obtained from the optimal subsample.
The weighted linear combination of coef.plt
and coef.ssp.
The combination weights depend on the relative size of n.plt
and n.ssp
and the estimated covariance matrices of coef.plt
and coef.ssp.
We blend the pilot subsample information into optimal subsample estimator since the pilot subsample has already been drawn. The coefficients and standard errors reported by summary are coef
and the square root of diag(cov)
.
The covariance matrix of coef.ssp
.
The covariance matrix of beta.cmb
.
Row indices of pilot subsample in the full dataset.
Row indices of of optimal subsample in the full dataset.
The number of observations in the full dataset.
The expected subsample size.
The terms object for the fitted model.
Wang, H., Zhang, A., & Wang, C. (2021). Nonuniform negative sampling and log odds correction with rare events data. Advances in Neural Information Processing Systems, 34, 19847-19859.
set.seed(1) N <- 2 * 1e4 beta0 <- c(-5, -rep(0.7, 6)) d <- length(beta0) - 1 X <- matrix(0, N, d) corr <- 0.5 sigmax <- corr ^ abs(outer(1:d, 1:d, "-")) sigmax <- sigmax / 4 X <- MASS::mvrnorm(n = N, mu = rep(0, d), Sigma = sigmax) Y <- rbinom(N, 1, 1 - 1 / (1 + exp(beta0[1] + X %*% beta0[-1]))) print(paste('N: ', N)) print(paste('sum(Y): ', sum(Y))) n.plt <- 200 n.ssp <- 1000 data <- as.data.frame(cbind(Y, X)) colnames(data) <- c("Y", paste("V", 1:ncol(X), sep="")) formula <- Y ~ . subsampling.results <- ssp.relogit(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, criterion = 'optA', likelihood = 'logOddsCorrection') summary(subsampling.results)
set.seed(1) N <- 2 * 1e4 beta0 <- c(-5, -rep(0.7, 6)) d <- length(beta0) - 1 X <- matrix(0, N, d) corr <- 0.5 sigmax <- corr ^ abs(outer(1:d, 1:d, "-")) sigmax <- sigmax / 4 X <- MASS::mvrnorm(n = N, mu = rep(0, d), Sigma = sigmax) Y <- rbinom(N, 1, 1 - 1 / (1 + exp(beta0[1] + X %*% beta0[-1]))) print(paste('N: ', N)) print(paste('sum(Y): ', sum(Y))) n.plt <- 200 n.ssp <- 1000 data <- as.data.frame(cbind(Y, X)) colnames(data) <- c("Y", paste("V", 1:ncol(X), sep="")) formula <- Y ~ . subsampling.results <- ssp.relogit(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, criterion = 'optA', likelihood = 'logOddsCorrection') summary(subsampling.results)
Draw subsample from full dataset and fit softmax(multinomial logistic) regression model on the subsample. Refer to vignette for a quick start.
ssp.softmax( formula, data, subset, n.plt, n.ssp, criterion = "MSPE", sampling.method = "poisson", likelihood = "MSCLE", constraint = "summation", control = list(...), contrasts = NULL, ... )
ssp.softmax( formula, data, subset, n.plt, n.ssp, criterion = "MSPE", sampling.method = "poisson", likelihood = "MSCLE", constraint = "summation", control = list(...), contrasts = NULL, ... )
formula |
A model formula object of class "formula" that describes the model to be fitted. |
data |
A data frame containing the variables in the model. Denote |
subset |
An optional vector specifying a subset of observations from |
n.plt |
The pilot subsample size (first-step subsample size). This subsample is used to compute the pilot estimator and estimate the optimal subsampling probabilities. |
n.ssp |
The expected size of the optimal subsample (second-step subsample). For |
criterion |
The criterion of optimal subsampling probabilities.
Choices include
|
sampling.method |
The sampling method to use.
Choices include
|
likelihood |
A bias-correction likelihood function is required for subsample since unequal subsampling probabilities introduce bias. Choices include
|
constraint |
The constraint for identifiability of softmax model. Choices include
|
control |
A list of parameters for controlling the sampling process. There are two tuning parameters
|
contrasts |
An optional list. It specifies how categorical variables are represented in the design matrix. For example, |
... |
A list of parameters which will be passed to |
A pilot estimator for the unknown parameter is required because MSPE, optA and
optL subsampling probabilities depend on
. There is no "free lunch" when determining optimal subsampling probabilities. For softmax regression, this
is achieved by drawing a size
n.plt
subsample with replacement from full
dataset with uniform sampling probability.
ssp.softmax returns an object of class "ssp.softmax" containing the following components (some are optional):
The original function call.
The pilot estimator. See Details for more information.
The estimator obtained from the optimal subsample.
The weighted linear combination of coef.plt
and coef.ssp
, under baseline constraint. The combination weights depend on the relative size of n.plt
and n.ssp
and the estimated covariance matrices of coef.plt
and coef.ssp.
We blend the pilot subsample information into optimal subsample estimator since the pilot subsample has already been drawn. The coefficients and standard errors reported by summary are coef
and the square root of diag(cov)
.
The pilot estimator under summation constrraint. coef.plt.sum = G %*% as.vector(coef.plt)
.
The estimator obtained from the optimal subsample under summation constrraint. coef.ssp.sum = G %*% as.vector(coef.ssp)
.
The weighted linear combination of coef.plt
and coef.ssp
, under summation constrraint. coef.sum = G %*% as.vector(coef)
.
The covariance matrix of coef.plt
.
The covariance matrix of coef.ssp
.
The covariance matrix of coef.cmb
.
The covariance matrix of coef.plt.sum
.
The covariance matrix of coef.ssp.sum
.
The covariance matrix of coef.sum
.
Row indices of pilot subsample in the full dataset.
Row indices of of optimal subsample in the full dataset.
The number of observations in the full dataset.
The expected subsample size.
The terms object for the fitted model.
Yao, Y., & Wang, H. (2019). Optimal subsampling for softmax regression. Statistical Papers, 60, 585-599.
Han, L., Tan, K. M., Yang, T., & Zhang, T. (2020). Local uncertainty sampling for large-scale multiclass logistic regression. Annals of Statistics, 48(3), 1770-1788.
Wang, H., & Kim, J. K. (2022). Maximum sampled conditional likelihood for informative subsampling. Journal of machine learning research, 23(332), 1-50.
Yao, Y., Zou, J., & Wang, H. (2023). Optimal poisson subsampling for softmax regression. Journal of Systems Science and Complexity, 36(4), 1609-1625.
Yao, Y., Zou, J., & Wang, H. (2023). Model constraints independent optimal subsampling probabilities for softmax regression. Journal of Statistical Planning and Inference, 225, 188-201.
# softmax regression d <- 3 # dim of covariates K <- 2 # K + 1 classes G <- rbind(rep(-1/(K+1), K), diag(K) - 1/(K+1)) %x% diag(d) N <- 1e4 beta.true.baseline <- cbind(rep(0, d), matrix(-1.5, d, K)) beta.true.summation <- cbind(rep(1, d), 0.5 * matrix(-1, d, K)) set.seed(1) mu <- rep(0, d) sigma <- matrix(0.5, nrow = d, ncol = d) diag(sigma) <- rep(1, d) X <- MASS::mvrnorm(N, mu, sigma) prob <- exp(X %*% beta.true.summation) prob <- prob / rowSums(prob) Y <- apply(prob, 1, function(row) sample(0:K, size = 1, prob = row)) n.plt <- 500 n.ssp <- 1000 data <- as.data.frame(cbind(Y, X)) colnames(data) <- c("Y", paste("V", 1:ncol(X), sep="")) head(data) formula <- Y ~ . -1 WithRep.MSPE <- ssp.softmax(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, criterion = 'MSPE', sampling.method = 'withReplacement', likelihood = 'weighted', constraint = 'baseline') summary(WithRep.MSPE)
# softmax regression d <- 3 # dim of covariates K <- 2 # K + 1 classes G <- rbind(rep(-1/(K+1), K), diag(K) - 1/(K+1)) %x% diag(d) N <- 1e4 beta.true.baseline <- cbind(rep(0, d), matrix(-1.5, d, K)) beta.true.summation <- cbind(rep(1, d), 0.5 * matrix(-1, d, K)) set.seed(1) mu <- rep(0, d) sigma <- matrix(0.5, nrow = d, ncol = d) diag(sigma) <- rep(1, d) X <- MASS::mvrnorm(N, mu, sigma) prob <- exp(X %*% beta.true.summation) prob <- prob / rowSums(prob) Y <- apply(prob, 1, function(row) sample(0:K, size = 1, prob = row)) n.plt <- 500 n.ssp <- 1000 data <- as.data.frame(cbind(Y, X)) colnames(data) <- c("Y", paste("V", 1:ncol(X), sep="")) head(data) formula <- Y ~ . -1 WithRep.MSPE <- ssp.softmax(formula = formula, data = data, n.plt = n.plt, n.ssp = n.ssp, criterion = 'MSPE', sampling.method = 'withReplacement', likelihood = 'weighted', constraint = 'baseline') summary(WithRep.MSPE)
Subsampling methods are utilized in statistical modeling for massive datasets. These methods aim to draw representative subsamples from the full dataset based on specific sampling probabilities, with the goal of maintaining inference efficiency. The sampling probabilities are tailored to particular objectives, such as minimizing the variance of the estimated coefficients or reducing prediction error. By using subsampling techniques, the package balances the trade-off between computational efficiency and statistical efficiency, making it a practical tool for massive data analysis.
Generalized Linear Models (GLMs)
Softmax (Multinomial) Regression
Rare Event Logistic Regression
Quantile Regression
Maintainer: Qingkai Dong [email protected] [copyright holder]
Authors:
Yaqiong Yao
Haiying Wang
Other contributors:
Qiang Zhang [contributor]
Jun Yan [contributor]
Useful links: