Package: semidist 0.1.0
semidist: Measure Dependence Between Categorical and Continuous Variables
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
Authors:
semidist_0.1.0.tar.gz
semidist_0.1.0.tar.gz(r-4.5-noble)semidist_0.1.0.tar.gz(r-4.4-noble)
semidist_0.1.0.tgz(r-4.4-emscripten)semidist_0.1.0.tgz(r-4.3-emscripten)
semidist.pdf |semidist.html✨
semidist/json (API)
NEWS
# Install 'semidist' in R: |
install.packages('semidist', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/wzhong41/semidist/issues1 issues
Last updated 1 years agofrom:9f2a02f817. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 16 2025 |
R-4.5-linux-x86_64 | OK | Mar 16 2025 |
R-4.4-linux-x86_64 | OK | Mar 16 2025 |
Exports:MINTsemiautoMINTsemipermmvmv_sismv_testsd_sissd_testsdcorsdcovswitch_cat_repr
Dependencies:bootclicodetoolsdigestenergyFNNfurrrfutureglobalsgluegsllifecyclelistenvmagrittrparallellypurrrRcppRcppArmadillorlangvctrs
Citation
To cite package ‘semidist’ in publications use:
Zhong W, Li Z, Guo W, Cui H, Li R (2023). semidist: Measure Dependence Between Categorical and Continuous Variables. R package version 0.1.0, https://CRAN.R-project.org/package=semidist.
Corresponding BibTeX entry:
@Manual{, title = {semidist: Measure Dependence Between Categorical and Continuous Variables}, author = {Wei Zhong and Zhuoxi Li and Wenwen Guo and Hengjian Cui and Runze Li}, year = {2023}, note = {R package version 0.1.0}, url = {https://CRAN.R-project.org/package=semidist}, }
Readme and manuals
Semi-Distance Correlation and MV Index: Measure Dependence Between Categorical and Continuous Variables
The goal of package `semidist` is to provide aneasy way to implement the semi-distance methods (Zhong et al., 2023) and MV index methods (Cui, Li and Zhong, 2015; Cui and Zhong, 2019).
Installation
To install semidist
,
install.packages("semidist")
Example
Here is a simple example showing how to use semidist
to measure the
dependence between a categorical variable and a multivariate continuous
variable, and apply the measure on testing the independence and conduct
groupwise feature screening.
library(semidist)
X <- mtcars[, c("mpg", "disp", "drat", "wt")]
y <- factor(mtcars[, "am"])
sdcov(X, y)
#> [1] 31.78288
sdcor(X, y)
#> [1] 0.3489821
sd_test(X, y)
#>
#> Semi-Distance Independence Test (Permutation Test with K = 10000)
#>
#> Data: X and y, Sample size = 32
#> Test statistic = 940.344, p-value = 0.0005999
#> Alternative hypothesis: Two random variables are not independent
sd_sis(X, y, d = 2)
#> $group_info
#> $group_info$`Grp mpg`
#> [1] "mpg"
#>
#> $group_info$`Grp disp`
#> [1] "disp"
#>
#> $group_info$`Grp drat`
#> [1] "drat"
#>
#> $group_info$`Grp wt`
#> [1] "wt"
#>
#>
#> $measurement
#> Grp mpg Grp disp Grp drat Grp wt
#> 0.3447938 0.3488447 0.5054821 0.5358834
#>
#> $selected
#> [1] "wt" "drat"
#>
#> $ordering
#> [1] "Grp wt" "Grp drat" "Grp disp" "Grp mpg"
# Suppose we have prior information for the group structure as
# ("mpg", "drat"), ("disp", "hp") and ("wt", "qsec")
group_info <- list(
mpg_drat = c("mpg", "drat"),
disp_wt = c("disp", "wt")
)
sd_sis(X, y, group_info, d = 2)
#> $group_info
#> $group_info$mpg_drat
#> [1] "mpg" "drat"
#>
#> $group_info$disp_wt
#> [1] "disp" "wt"
#>
#>
#> $measurement
#> mpg_drat disp_wt
#> 0.3518051 0.3488598
#>
#> $selected
#> [1] "mpg" "drat"
#>
#> $ordering
#> [1] "mpg_drat" "disp_wt"
References
- Wei Zhong, Zhuoxi Li, Wenwen Guo and Hengjian Cui. (2023) “Semi-Distance Correlation and Its Applications.” Journal of the American Statistical Association.
- Hengjian Cui and Wei Zhong (2019). “A Distribution-Free Test of Independence Based on Mean Variance Index.” Computational Statistics & Data Analysis, 139, 117-133.
- Hengjian Cui, Runze Li and Wei Zhong (2015). “Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis.” Journal of the American Statistical Association, 110, 630-641.
Help Manual
Help page | Topics |
---|---|
Mutual information independence test (categorical-continuous case) | MINTsemiauto MINTsemiperm |
Mean Variance (MV) statistics | mv |
Feature screening via MV Index | mv_sis |
MV independence test | mv_test |
Print Method for Independence Tests Between Categorical and Continuous Variables | print.indtest |
Feature screening via semi-distance correlation | sd_sis |
Semi-distance independence test | sd_test |
Semi-distance covariance and correlation statistics | sdcor sdcov |
Switch the representation of a categorical object | switch_cat_repr |
Estimate the trace of the covariance matrix and its square | tr_estimate |