Package: plgp 1.1-12

Robert B. Gramacy

plgp: Particle Learning of Gaussian Processes

Sequential Monte Carlo (SMC) inference for fully Bayesian Gaussian process (GP) regression and classification models by particle learning (PL) following Gramacy & Polson (2011) <arxiv:0909.5262>. The sequential nature of inference and the active learning (AL) hooks provided facilitate thrifty sequential design (by entropy) and optimization (by improvement) for classification and regression models, respectively. This package essentially provides a generic PL interface, and functions (arguments to the interface) which implement the GP models and AL heuristics. Functions for a special, linked, regression/classification GP model and an integrated expected conditional improvement (IECI) statistic provide for optimization in the presence of unknown constraints. Separable and isotropic Gaussian, and single-index correlation functions are supported. See the examples section of ?plgp and demo(package="plgp") for an index of demos.

Authors:Robert B. Gramacy <[email protected]>

plgp_1.1-12.tar.gz
plgp_1.1-12.tar.gz(r-4.5-noble)plgp_1.1-12.tar.gz(r-4.4-noble)
plgp_1.1-12.tgz(r-4.4-emscripten)plgp_1.1-12.tgz(r-4.3-emscripten)
plgp.pdf |plgp.html
plgp/json (API)

# Install 'plgp' in R:
install.packages('plgp', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.97 score 1 stars 3 packages 103 scripts 457 downloads 77 exports 5 dependencies

Last updated 2 years agofrom:6c89abe8b7. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-linux-x86_64OKNov 22 2024

Exports:addpall.CGPaddpall.ConstGPaddpall.GPalc.adaptalc.const.adaptalc.ConstGPalc.GPcalc.alcscalc.eciscalc.eiscalc.entscalc.iecicalc.ieciscalc.ktKik.xcalc.varscalc2.ktKik.xcovarcovar.sepcovar.simcv.foldsdata.CGPdata.CGP.adaptdata.ConstGP.improvdata.GPdata.GP.improvdist2covar.symmdistancedraw.CGPdraw.ConstGPdraw.GPEIei.adaptentropyentropy.adaptentropy.bvsbexp2d.Cfindmin.ConstGPfindmin.GPgetmap.CGPgetmap.GPieci.adaptieci.const.adaptieci.ConstGPieci.GPinit.CGPinit.ConstGPinit.GPlatents.CGPlpost.GPlpredprob.CGPlpredprob.ConstGPlpredprob.GPmindist.adaptpapplyparams.CGPparams.ConstGPparams.GPphistPLPL.clearPL.envpred.CGPpred.ConstGPpred.GPpred.mean.GPprior.CGPprior.ConstGPprior.GPpropagate.CGPpropagate.ConstGPpropagate.GPrectscalerectunscalerenorm.lweightsrenorm.weightsresampletquants

Dependencies:clustermaptreemvtnormrparttgp

Readme and manuals

Help Manual

Help pageTopics
Particle Learning of Gaussian Processesplgp-package
Add data to palladdpall.CGP addpall.ConstGP addpall.GP
Supply GP data to PLdata.CGP data.CGP.adapt data.ConstGP data.ConstGP.improv data.GP data.GP.improv
Metropolis-Hastings draw for GP parametersdraw.CGP draw.ConstGP draw.GP
2-d Exponential Hessian Dataexp2d.C
Initialize particles for GPsinit.CGP init.ConstGP init.GP
Log-Predictive Probability Calculation for GPslpredprob.CGP lpredprob.ConstGP lpredprob.GP
Extending apply to particlespapply
Extract parameters from GP particlesparams.CGP params.ConstGP params.GP
Particle Learning Skeleton MethodPL PL.env plgp
Prediction for GPspred.CGP pred.ConstGP pred.GP
Generate priors for GP modelsprior.CGP prior.ConstGP prior.GP
PL propagate rule for GPspropagate.CGP propagate.ConstGP propagate.GP
Un/Scale data in a bounding rectanglerectscale rectunscale