Package: picasso 1.3.1
Jason Ge
picasso: Pathwise Calibrated Sparse Shooting Algorithm
Computationally efficient tools for fitting generalized linear model with convex or non-convex penalty. Users can enjoy the superior statistical property of non-convex penalty such as SCAD and MCP which has significantly less estimation error and overfitting compared to convex penalty such as lasso and ridge. Computation is handled by multi-stage convex relaxation and the PathwIse CAlibrated Sparse Shooting algOrithm (PICASSO) which exploits warm start initialization, active set updating, and strong rule for coordinate preselection to boost computation, and attains a linear convergence to a unique sparse local optimum with optimal statistical properties. The computation is memory-optimized using the sparse matrix output.
Authors:
picasso_1.3.1.tar.gz
picasso_1.3.1.tar.gz(r-4.5-noble)picasso_1.3.1.tar.gz(r-4.4-noble)
picasso_1.3.1.tgz(r-4.4-emscripten)picasso_1.3.1.tgz(r-4.3-emscripten)
picasso.pdf |picasso.html✨
picasso/json (API)
# Install 'picasso' in R: |
install.packages('picasso', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- eyedata - The Bardet-Biedl syndrome Gene expression data from Scheetz et al.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:2422a6e515. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 31 2024 |
Exports:coef.gaussiancoef.logitcoef.poissoncoef.sqrtlassopicassoplot.gaussianplot.logitplot.poissonplot.sqrtlassopredict.gaussianpredict.logitpredict.poissonprint.gaussianprint.logitprint.poissonprint.sqrtlasso