Title: | Pathwise Calibrated Sparse Shooting Algorithm |
---|---|
Description: | Computationally efficient tools for fitting generalized linear model with convex or non-convex penalty. Users can enjoy the superior statistical property of non-convex penalty such as SCAD and MCP which has significantly less estimation error and overfitting compared to convex penalty such as lasso and ridge. Computation is handled by multi-stage convex relaxation and the PathwIse CAlibrated Sparse Shooting algOrithm (PICASSO) which exploits warm start initialization, active set updating, and strong rule for coordinate preselection to boost computation, and attains a linear convergence to a unique sparse local optimum with optimal statistical properties. The computation is memory-optimized using the sparse matrix output. |
Authors: | Jason Ge, Xingguo Li, Haoming Jiang, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao |
Maintainer: | Jason Ge <[email protected]> |
License: | GPL-3 |
Version: | 1.3.1 |
Built: | 2024-11-24 23:53:58 UTC |
Source: | CRAN |
This package provides computationally efficient tools for fitting generalized linear model with convex and non-convex penalty. Users can enjoy the superior statistical property of non-convex penalty such as SCAD and MCP which has significantly less estimation error and overfitting compared to convex penalty such as l1 and ridge. Computation is handled by multi-stage convex relaxation and the PathwIse CAlibrated Sparse Shooting algOrithm (PICASSO) which exploits warm start initialization, active set updating, and strong rule for coordinate preselection to boost computation, and attains a linear convergence to a unique sparse local optimum with optimal statistical properties. The computation is memory-optimized using the sparse matrix output.
Package: | picasso |
Type: | Package |
Version: | 0.5.4 |
Date: | 2016-09-20 |
License: | GPL-2 |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
"gaussian"
Extract estimated regression coefficient vectors from the solution path.
## S3 method for class 'gaussian' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
## S3 method for class 'gaussian' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
object |
An object with S3 class |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
beta.idx |
The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"logit"
Extract estimated regression coefficient vectors from the solution path.
## S3 method for class 'logit' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
## S3 method for class 'logit' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
object |
An object with S3 class |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
beta.idx |
The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"poisson"
Extract estimated regression coefficient vectors from the solution path.
## S3 method for class 'poisson' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
## S3 method for class 'poisson' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
object |
An object with S3 class |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
beta.idx |
The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"sqrtlasso"
Extract estimated regression coefficient vectors from the solution path.
## S3 method for class 'sqrtlasso' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
## S3 method for class 'sqrtlasso' coef(object, lambda.idx = c(1:3), beta.idx = c(1:3), ...)
object |
An object with S3 class |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
beta.idx |
The indices of the estimate regression coefficient vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
Gene expression data (20 genes for 120 samples) from the microarray experiments of mammalianeye tissue samples of Scheetz et al. (2006).
data(eyedata)
data(eyedata)
The format is a list containing conatins a matrix and a vector. 1. x - an 120 by 200 matrix, which represents the data of 120 rats with 200 gene probes. 2. y - a 120-dimensional vector of, which represents the expression level of TRIM32 gene.
This data set contains 120 samples with 200 predictors
Xingguo Li, Tuo Zhao, Tong Zhang and Han Liu
Maintainer: Xingguo Li <[email protected]>
1. T. Scheetz, k. Kim, R. Swiderski, A. Philp, T. Braun, K. Knudtson, A. Dorrance, G. DiBona, J. Huang, T. Casavant, V. Sheffield, E. Stone .Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proceedings of the National Academy of Sciences of the United States of America, 2006.
data(eyedata) image(x)
data(eyedata) image(x)
The function "picasso" implements the user interface.
picasso(X, Y, lambda = NULL, nlambda = 100, lambda.min.ratio = 0.05, family = "gaussian", method = "l1", type.gaussian = "naive", gamma = 3, df = NULL, standardize = TRUE, intercept = TRUE, prec = 1e-07, max.ite = 1000, verbose = FALSE)
picasso(X, Y, lambda = NULL, nlambda = 100, lambda.min.ratio = 0.05, family = "gaussian", method = "l1", type.gaussian = "naive", gamma = 3, df = NULL, standardize = TRUE, intercept = TRUE, prec = 1e-07, max.ite = 1000, verbose = FALSE)
X |
|
Y |
|
lambda |
A sequence of decresing positive values to control the regularization. Typical usage is to leave the input |
nlambda |
The number of values used in |
lambda.min.ratio |
The smallest value for |
Caution: logistic and poisson regression can be ill-conditioned if lambda is too small for nonconvex penalty. We suggest the user to avoid using any lambda.min.raito smaller than 0.05 for logistic/poisson regression under nonconvex penalty.
family |
Options for model. Sparse linear regression and sparse multivariate regression is applied if |
method |
Options for regularization. Lasso is applied if |
type.gaussian |
Options for updating residuals in sparse linear regression. The naive update rule is applied if |
gamma |
The concavity parameter for MCP and SCAD. The default value is |
df |
Maximum degree of freedom for the covariance update. The default value is |
standardize |
Design matrix X will be standardized to have mean zero and unit standard deviation if |
intercept |
Does the model has intercept term or not. Default value is |
prec |
Stopping precision. The default value is 1e-7. |
max.ite |
Max number of iterations for the algorithm. The default value is 1000. |
verbose |
Tracing information is disabled if |
For sparse linear regression,
where can be
norm, MCP, SCAD regularizers.
For sparse logistic regression,
where can be
norm, MCP, and SCAD regularizers.
For sparse poisson regression,
where can be
norm, MCP or SCAD regularizers.
An object with S3 classes "gaussian"
, "binomial"
, and "poisson"
corresponding to sparse linear regression, sparse logistic regression, and sparse poisson regression respectively is returned:
beta |
A matrix of regression estimates whose columns correspond to regularization parameters for sparse linear regression and sparse logistic regression. A list of matrices of regression estimation corresponding to regularization parameters for sparse column inverse operator. |
intercept |
The value of intercepts corresponding to regularization parameters for sparse linear regression, and sparse logistic regression. |
Y |
The value of |
X |
The value of |
lambda |
The sequence of regularization parameters |
nlambda |
The number of values used in |
family |
The |
method |
The |
path |
A list of |
sparsity |
The sparsity levels of the graph path for sparse inverse column operator. |
standardize |
The |
df |
The degree of freecom (number of nonzero coefficients) along the solution path for sparse linear regression, nd sparse logistic regression. |
ite |
A list of vectors where the i-th entries of ite[[1]] and ite[[2]] correspond to the outer iteration and inner iteration of i-th regularization parameter respectively. |
verbose |
The |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
1. J. Friedman, T. Hastie and H. Hofling and R. Tibshirani. Pathwise coordinate optimization. The Annals of Applied Statistics, 2007.
2. C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 2010.
3. J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 2001.
4. R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor and R. Tibshirani. Strong rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series B, 2012.
5. T. Zhao, H. Liu, and T. Zhang. A General Theory of Pathwise Coordinate Optimization. Techinical Report, Princeton Univeristy.
################################################################ ## Sparse linear regression ## Generate the design matrix and regression coefficient vector n = 100 # sample number d = 80 # sample dimension c = 0.5 # correlation parameter s = 20 # support size of coefficient set.seed(2016) X = scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n) beta = c(runif(s), rep(0, d-s)) ## Generate response using Gaussian noise, and fit sparse linear models noise = rnorm(n) Y = X%*%beta + noise ## l1 regularization solved with naive update fitted.l1.naive = picasso(X, Y, nlambda=100, type.gaussian="naive") ## l1 regularization solved with covariance update fitted.l1.covariance = picasso(X, Y, nlambda=100, type.gaussian="covariance") ## mcp regularization fitted.mcp = picasso(X, Y, nlambda=100, method="mcp") ## scad regularization fitted.scad = picasso(X, Y, nlambda=100, method="scad") ## lambdas used print(fitted.l1.naive$lambda) ## number of nonzero coefficients for each lambda print(fitted.l1.naive$df) ## coefficients and intercept for the i-th lambda i = 30 print(fitted.l1.naive$lambda[i]) print(fitted.l1.naive$beta[,i]) print(fitted.l1.naive$intercept[i]) ## Visualize the solution path plot(fitted.l1.naive) plot(fitted.l1.covariance) plot(fitted.mcp) plot(fitted.scad) ################################################################ ## Sparse logistic regression ## Generate the design matrix and regression coefficient vector n <- 100 # sample number d <- 80 # sample dimension c <- 0.5 # parameter controlling the correlation between columns of X s <- 20 # support size of coefficient set.seed(2016) X <- scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n) beta <- c(runif(s), rep(0, d-s)) ## Generate response and fit sparse logistic models p = 1/(1+exp(-X%*%beta)) Y = rbinom(n, rep(1,n), p) ## l1 regularization fitted.l1 = picasso(X, Y, nlambda=100, family="binomial", method="l1") ## mcp regularization fitted.mcp = picasso(X, Y, nlambda=100, family="binomial", method="mcp") ## scad regularization fitted.scad = picasso(X, Y, nlambda=100, family="binomial", method="scad") ## lambdas used print(fitted.l1$lambda) ## number of nonzero coefficients for each lambda print(fitted.l1$df) ## coefficients and intercept for the i-th lambda i = 30 print(fitted.l1$lambda[i]) print(fitted.l1$beta[,i]) print(fitted.l1$intercept[i]) ## Visualize the solution path plot(fitted.l1) ## Estimate of Bernoulli parameters param.l1 = fitted.l1$p ################################################################ ## Sparse poisson regression ## Generate the design matrix and regression coefficient vector n <- 100 # sample number d <- 80 # sample dimension c <- 0.5 # parameter controlling the correlation between columns of X s <- 20 # support size of coefficient set.seed(2016) X <- scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n) beta <- c(runif(s), rep(0, d-s))/sqrt(s) ## Generate response and fit sparse poisson models p = X%*%beta+rnorm(n) Y = rpois(n, exp(p)) ## l1 regularization fitted.l1 = picasso(X, Y, nlambda=100, family="poisson", method="l1") ## mcp regularization fitted.mcp = picasso(X, Y, nlambda=100, family="poisson", method="mcp") ## scad regularization fitted.scad = picasso(X, Y, nlambda=100, family="poisson", method="scad") ## lambdas used print(fitted.l1$lambda) ## number of nonzero coefficients for each lambda print(fitted.l1$df) ## coefficients and intercept for the i-th lambda i = 30 print(fitted.l1$lambda[i]) print(fitted.l1$beta[,i]) print(fitted.l1$intercept[i]) ## Visualize the solution path plot(fitted.l1)
################################################################ ## Sparse linear regression ## Generate the design matrix and regression coefficient vector n = 100 # sample number d = 80 # sample dimension c = 0.5 # correlation parameter s = 20 # support size of coefficient set.seed(2016) X = scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n) beta = c(runif(s), rep(0, d-s)) ## Generate response using Gaussian noise, and fit sparse linear models noise = rnorm(n) Y = X%*%beta + noise ## l1 regularization solved with naive update fitted.l1.naive = picasso(X, Y, nlambda=100, type.gaussian="naive") ## l1 regularization solved with covariance update fitted.l1.covariance = picasso(X, Y, nlambda=100, type.gaussian="covariance") ## mcp regularization fitted.mcp = picasso(X, Y, nlambda=100, method="mcp") ## scad regularization fitted.scad = picasso(X, Y, nlambda=100, method="scad") ## lambdas used print(fitted.l1.naive$lambda) ## number of nonzero coefficients for each lambda print(fitted.l1.naive$df) ## coefficients and intercept for the i-th lambda i = 30 print(fitted.l1.naive$lambda[i]) print(fitted.l1.naive$beta[,i]) print(fitted.l1.naive$intercept[i]) ## Visualize the solution path plot(fitted.l1.naive) plot(fitted.l1.covariance) plot(fitted.mcp) plot(fitted.scad) ################################################################ ## Sparse logistic regression ## Generate the design matrix and regression coefficient vector n <- 100 # sample number d <- 80 # sample dimension c <- 0.5 # parameter controlling the correlation between columns of X s <- 20 # support size of coefficient set.seed(2016) X <- scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n) beta <- c(runif(s), rep(0, d-s)) ## Generate response and fit sparse logistic models p = 1/(1+exp(-X%*%beta)) Y = rbinom(n, rep(1,n), p) ## l1 regularization fitted.l1 = picasso(X, Y, nlambda=100, family="binomial", method="l1") ## mcp regularization fitted.mcp = picasso(X, Y, nlambda=100, family="binomial", method="mcp") ## scad regularization fitted.scad = picasso(X, Y, nlambda=100, family="binomial", method="scad") ## lambdas used print(fitted.l1$lambda) ## number of nonzero coefficients for each lambda print(fitted.l1$df) ## coefficients and intercept for the i-th lambda i = 30 print(fitted.l1$lambda[i]) print(fitted.l1$beta[,i]) print(fitted.l1$intercept[i]) ## Visualize the solution path plot(fitted.l1) ## Estimate of Bernoulli parameters param.l1 = fitted.l1$p ################################################################ ## Sparse poisson regression ## Generate the design matrix and regression coefficient vector n <- 100 # sample number d <- 80 # sample dimension c <- 0.5 # parameter controlling the correlation between columns of X s <- 20 # support size of coefficient set.seed(2016) X <- scale(matrix(rnorm(n*d),n,d)+c*rnorm(n))/sqrt(n-1)*sqrt(n) beta <- c(runif(s), rep(0, d-s))/sqrt(s) ## Generate response and fit sparse poisson models p = X%*%beta+rnorm(n) Y = rpois(n, exp(p)) ## l1 regularization fitted.l1 = picasso(X, Y, nlambda=100, family="poisson", method="l1") ## mcp regularization fitted.mcp = picasso(X, Y, nlambda=100, family="poisson", method="mcp") ## scad regularization fitted.scad = picasso(X, Y, nlambda=100, family="poisson", method="scad") ## lambdas used print(fitted.l1$lambda) ## number of nonzero coefficients for each lambda print(fitted.l1$df) ## coefficients and intercept for the i-th lambda i = 30 print(fitted.l1$lambda[i]) print(fitted.l1$beta[,i]) print(fitted.l1$intercept[i]) ## Visualize the solution path plot(fitted.l1)
Visualize the solution path of regression estimate corresponding to regularization paramters.
## S3 method for class 'gaussian' plot(x, ...)
## S3 method for class 'gaussian' plot(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
Visualize the solution path of regression estimate corresponding to regularization paramters.
## S3 method for class 'logit' plot(x, ...)
## S3 method for class 'logit' plot(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
Visualize the solution path of regression estimate corresponding to regularization paramters.
## S3 method for class 'poisson' plot(x, ...)
## S3 method for class 'poisson' plot(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
Visualize the solution path of regression estimate corresponding to regularization paramters.
## S3 method for class 'sqrtlasso' plot(x, ...)
## S3 method for class 'sqrtlasso' plot(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"gaussian"
Predicting responses of the given design data.
## S3 method for class 'gaussian' predict(object, newdata, lambda.idx = c(1:3), Y.pred.idx = c(1:5), ...)
## S3 method for class 'gaussian' predict(object, newdata, lambda.idx = c(1:3), Y.pred.idx = c(1:5), ...)
object |
An object with S3 class |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the traning data of the are used. |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
Y.pred.idx |
The indices of the predicted response vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
predict.gaussian
produces predicted values of the responses of the newdata
from the estimated beta
values in the object
, i.e.
Y.pred |
The predicted response vectors based on the estimated models. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"logit"
Predicting responses of the given design data.
## S3 method for class 'logit' predict(object, newdata, lambda.idx = c(1:3), p.pred.idx = c(1:5), ...)
## S3 method for class 'logit' predict(object, newdata, lambda.idx = c(1:3), p.pred.idx = c(1:5), ...)
object |
An object with S3 class |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the traning data of the are used. |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
p.pred.idx |
The indices of the predicted response vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
predict.logit
produces predicted values of the responses of the newdata
from the estimated beta
values in the object
, i.e.
p.pred |
The predicted response vectors based on the estimated models. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"poisson"
Predicting responses of the given design data.
## S3 method for class 'poisson' predict(object, newdata, lambda.idx = c(1:3), p.pred.idx = c(1:5), ...)
## S3 method for class 'poisson' predict(object, newdata, lambda.idx = c(1:3), p.pred.idx = c(1:5), ...)
object |
An object with S3 class |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the traning data of the are used. |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
p.pred.idx |
The indices of the predicted response vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
predict.poisson
produces predicted response mean (which is also the parameter for poisson distribution) for the newdata
from the estimated beta
values in the object
, i.e.
p.pred |
The predicted response mean vectors based on the estimated models. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"sqrtlasso"
Predicting responses of the given design data.
## S3 method for class 'sqrtlasso' predict(object, newdata, lambda.idx = c(1:3), Y.pred.idx = c(1:5), ...)
## S3 method for class 'sqrtlasso' predict(object, newdata, lambda.idx = c(1:3), Y.pred.idx = c(1:5), ...)
object |
An object with S3 class |
newdata |
An optional data frame in which to look for variables with which to predict. If omitted, the traning data of the are used. |
lambda.idx |
The indices of the regularizaiton parameters in the solution path to be displayed. The default values are |
Y.pred.idx |
The indices of the predicted response vectors in the solution path to be displayed. The default values are |
... |
Arguments to be passed to methods. |
predict.sqrtlasso
produces predicted values of the responses of the newdata
from the estimated beta
values in the object
, i.e.
Y.pred |
The predicted response vectors based on the estimated models. |
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"gaussian"
Print a summary of the information about an object with S3 class "gaussian"
.
## S3 method for class 'gaussian' print(x, ...)
## S3 method for class 'gaussian' print(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
This call simply outlines the options used for computing a lasso object.
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"logit"
Print a summary of the information about an object with S3 class "logit"
.
## S3 method for class 'logit' print(x, ...)
## S3 method for class 'logit' print(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
This call simply outlines the options used for computing a logit object.
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
poisson
Print a summary of the information about an object with S3 class "poisson"
.
## S3 method for class 'poisson' print(x, ...)
## S3 method for class 'poisson' print(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
This call simply outlines the options used for computing a sparse poisson regression object.
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.
"sqrtlasso"
Print a summary of the information about an object with S3 class "sqrtlasso"
.
## S3 method for class 'sqrtlasso' print(x, ...)
## S3 method for class 'sqrtlasso' print(x, ...)
x |
An object with S3 class |
... |
Arguments to be passed to methods. |
This call simply outlines the options used for computing a lasso object.
Jason Ge, Xingguo Li, Mengdi Wang, Tong Zhang, Han Liu and Tuo Zhao
Maintainer: Jason Ge <[email protected]>
picasso
and picasso-package
.