Package: multinomialLogitMix 1.1
multinomialLogitMix: Clustering Multinomial Count Data under the Presence of Covariates
Methods for model-based clustering of multinomial counts under the presence of covariates using mixtures of multinomial logit models, as implemented in Papastamoulis (2023) <doi:10.1007/s11634-023-00547-5>. These models are estimated under a frequentist as well as a Bayesian setup using the Expectation-Maximization algorithm and Markov chain Monte Carlo sampling (MCMC), respectively. The (unknown) number of clusters is selected according to the Integrated Completed Likelihood criterion (for the frequentist model), and estimating the number of non-empty components using overfitting mixture models after imposing suitable sparse prior assumptions on the mixing proportions (in the Bayesian case), see Rousseau and Mengersen (2011) <doi:10.1111/j.1467-9868.2011.00781.x>. In the latter case, various MCMC chains run in parallel and are allowed to switch states. The final MCMC output is suitably post-processed in order to undo label switching using the Equivalence Classes Representatives (ECR) algorithm, as described in Papastamoulis (2016) <doi:10.18637/jss.v069.c01>.
Authors:
multinomialLogitMix_1.1.tar.gz
multinomialLogitMix_1.1.tar.gz(r-4.5-noble)multinomialLogitMix_1.1.tar.gz(r-4.4-noble)
multinomialLogitMix_1.1.tgz(r-4.4-emscripten)multinomialLogitMix_1.1.tgz(r-4.3-emscripten)
multinomialLogitMix.pdf |multinomialLogitMix.html✨
multinomialLogitMix/json (API)
# Install 'multinomialLogitMix' in R: |
install.packages('multinomialLogitMix', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:91a3e35ac2. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 09 2024 |
R-4.5-linux-x86_64 | OK | Dec 09 2024 |
Exports:dealWithLabelSwitchingexpected_complete_LLgibbs_mala_samplergibbs_mala_sampler_pptlog_dirichlet_pdflog_mix_prior_derivativelog_prior_mixmala_proposalmala_proposal_cppmix_mnm_logisticmixLoglikelihood_GLMmultinomial_logistic_EMmultinomialLogitMixmyDirichletnewton_raphson_mstepshakeEM_GLMsimulate_multinomial_datasplitEM_GLM
Dependencies:clicodacodetoolscolorspacecombinatdoParallelfansifarverforeachggplot2gluegtableisobanditeratorslabel.switchinglabelinglatticelifecyclelpSolvemagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadillorlangscalestibbleutf8vctrsviridisLitewithr