Package: mlr3spatiotempcv 2.3.2

Patrick Schratz

mlr3spatiotempcv: Spatiotemporal Resampling Methods for 'mlr3'

Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at <doi:10.18637/jss.v111.i07>.

Authors:Patrick Schratz [aut, cre], Marc Becker [aut], Jannes Muenchow [ctb], Michel Lang [ctb]

mlr3spatiotempcv_2.3.2.tar.gz
mlr3spatiotempcv_2.3.2.tar.gz(r-4.5-noble)mlr3spatiotempcv_2.3.2.tar.gz(r-4.4-noble)
mlr3spatiotempcv_2.3.2.tgz(r-4.4-emscripten)mlr3spatiotempcv_2.3.2.tgz(r-4.3-emscripten)
mlr3spatiotempcv.pdf |mlr3spatiotempcv.html
mlr3spatiotempcv/json (API)
NEWS

# Install 'mlr3spatiotempcv' in R:
install.packages('mlr3spatiotempcv', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/mlr-org/mlr3spatiotempcv/issues4 issues

Pkgdown site:https://mlr3spatiotempcv.mlr-org.com

Datasets:

On CRAN:

Conda:

3.36 score 1.2k downloads 29 exports 48 dependencies

Last updated 4 months agofrom:1d3938a4a0. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-linuxOKMar 29 2025
R-4.4-linuxOKMar 29 2025

Exports:as_task_classif_stas_task_classif_st.data.frameas_task_classif_st.DataBackendas_task_classif_st.sfas_task_classif_st.TaskClassifSTas_task_regr_stas_task_regr_st.data.frameas_task_regr_st.DataBackendas_task_regr_st.sfas_task_regr_st.TaskClassifSTas_task_regr_st.TaskRegrSTautoplotResamplingRepeatedSpCVBlockResamplingRepeatedSpCVCoordsResamplingRepeatedSpCVDiscResamplingRepeatedSpCVEnvResamplingRepeatedSpCVKnndmResamplingRepeatedSpCVTilesResamplingRepeatedSptCVCstfResamplingSpCVBlockResamplingSpCVBufferResamplingSpCVCoordsResamplingSpCVDiscResamplingSpCVEnvResamplingSpCVKnndmResamplingSpCVTilesResamplingSptCVCstfTaskClassifSTTaskRegrST

Dependencies:backportscheckmateclicodetoolscolorspacedata.tabledigestevaluatefansifarverfuturefuture.applyggplot2globalsgluegtableisobandlabelinglatticelgrlifecyclelistenvmagrittrMASSMatrixmgcvmlbenchmlr3mlr3measuresmlr3miscmunsellnlmepalmerpenguinsparadoxparallellypillarpkgconfigPRROCR6RColorBrewerrlangscalestibbleutf8uuidvctrsviridisLitewithr

Getting Started

Rendered frommlr3spatiotempcv.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2023-10-24
Started: 2020-11-11

Spatiotemporal Visualization

Rendered fromspatiotemp-viz.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2024-01-23
Started: 2020-11-11

Citation

To cite mlr3spatiotempcv in publications use:

Schratz P, Becker M, Lang M, Brenning A (2024). “mlr3spatiotempcv: Spatiotemporal Resampling Methods for Machine Learning in R.” Journal of Statistical Software, 111(7), 1–36. doi:10.18637/jss.v111.i07.

Corresponding BibTeX entry:

  @Article{,
    title = {{mlr3spatiotempcv}: Spatiotemporal Resampling Methods for
      Machine Learning in {R}},
    author = {Patrick Schratz and Marc Becker and Michel Lang and
      Alexander Brenning},
    journal = {Journal of Statistical Software},
    year = {2024},
    volume = {111},
    number = {7},
    pages = {1--36},
    doi = {10.18637/jss.v111.i07},
  }

Readme and manuals

mlr3spatiotempcv

Package website: release | dev

Spatiotemporal resampling methods for mlr3.

This package extends the mlr3 package framework with spatiotemporal resampling and visualization methods.

If you prefer the tidymodels ecosystem, have a look at the {spatialsample} package for spatial sampling methods.

Installation

CRAN version

install.packages("mlr3spatiotempcv")

Development version

remotes::install_github("mlr-org/mlr3spatiotempcv")

# R Universe Repo
install.packages('mlr3spatiotempcv', mlrorg = 'https://mlr-org.r-universe.dev')

Get Started

See the "Get Started" vignette for a quick introduction.

For more detailed information including an usage example see the "Spatiotemporal Analysis" chapter in the mlr3book.

Article "Spatiotemporal Visualization" shows how 3D subplots grids can be created.

Citation

To cite the package in publications, use the output of citation("mlr3spatiotempcv").

Resources

Other spatiotemporal resampling packages

This list does not claim to be comprehensive.

(Disclaimer: Because CRAN does not like DOI URLs in their automated checks, direct linking to scientific articles is not possible...)

Name Language Resources
blockCV R CRAN
CAST R Paper, CRAN
ENMeval R CRAN
spatialsample R CRAN
sperrorest R CRAN
Pyspatialml Python GitHub
spacv Python GitHub
Museo Toolbox Python Paper, GitHub
spatial-kfold Python GitHub

FAQ

Which resampling method should I use?
There is no single-best resampling method. It depends on your dataset characteristics and what your model should is about to predict on. The resampling scheme should reflect the final purpose of the model - this concept is called "target-oriented" resampling. For example, if the model was trained on multiple forest plots and its purpose is to predict something on unknown forest stands, the resampling structure should reflect this.
Are there more resampling methods than the one {mlr3spatiotempcv} offers?
{mlr3spatiotempcv} aims to offer all resampling methods that exist in R. Though this does not mean that it covers all resampling methods. If there are some that you are missing, feel free to open an issue.
How can I use the "blocking" concept of the old {mlr}?
This concept is now supported via the "column roles" concept available in {mlr3} [Task](https://mlr3.mlr-org.com/reference/Task.html) objects. See [this documentation](https://mlr3.mlr-org.com/reference/Resampling.html#grouping-blocking) for more information.
For the methods that offer buffering, how can an appropriate value be chosen?
There is no easy answer to this question. Buffering train and test sets reduces the similarity between both. The degree of this reduction depends on the dataset itself and there is no general approach how to choosen an appropriate buffer size. Some studies used the distance at which the autocorrelation levels off. This buffer distance often removes quite a lot of observations and needs to be calculated first.

Help Manual

Help pageTopics
mlr3spatiotempcv: Spatiotemporal Resampling Methods for 'mlr3'mlr3spatiotempcv-package mlr3spatiotempcv
Convert to a Spatiotemporal Classification Taskas_task_classif_st as_task_classif_st.data.frame as_task_classif_st.DataBackend as_task_classif_st.sf as_task_classif_st.TaskClassifST
Convert to a Spatiotemporal Regression Taskas_task_regr_st as_task_regr_st.data.frame as_task_regr_st.DataBackend as_task_regr_st.sf as_task_regr_st.TaskClassifST as_task_regr_st.TaskRegrST
Visualization Functions for Non-Spatial CV Methods.autoplot.ResamplingCustomCV plot.ResamplingCustomCV
Visualization Functions for Non-Spatial CV Methods.autoplot.ResamplingCV autoplot.ResamplingRepeatedCV plot.ResamplingCV plot.ResamplingRepeatedCV
Visualization Functions for SpCV Block Methods.autoplot.ResamplingRepeatedSpCVBlock autoplot.ResamplingSpCVBlock plot.ResamplingRepeatedSpCVBlock plot.ResamplingSpCVBlock
Visualization Functions for SpCV Buffer Methods.autoplot.ResamplingSpCVBuffer plot.ResamplingSpCVBuffer
Visualization Functions for SpCV Coords Methods.autoplot.ResamplingRepeatedSpCVCoords autoplot.ResamplingSpCVCoords plot.ResamplingRepeatedSpCVCoords plot.ResamplingSpCVCoords
Visualization Functions for SpCV Disc Method.autoplot.ResamplingRepeatedSpCVDisc autoplot.ResamplingSpCVDisc plot.ResamplingRepeatedSpCVDisc plot.ResamplingSpCVDisc
Visualization Functions for SpCV Env Methods.autoplot.ResamplingRepeatedSpCVEnv autoplot.ResamplingSpCVEnv plot.ResamplingRepeatedSpCVEnv plot.ResamplingSpCVEnv
Visualization Functions for SpCV knndm Method.autoplot.ResamplingRepeatedSpCVKnndm autoplot.ResamplingSpCVKnndm plot.ResamplingRepeatedSpCVKnndm plot.ResamplingSpCVKnndm
Visualization Functions for SpCV Tiles Method.autoplot.ResamplingRepeatedSpCVTiles autoplot.ResamplingSpCVTiles plot.ResamplingRepeatedSpCVTiles plot.ResamplingSpCVTiles
Visualization Functions for SptCV Cstf Methods.autoplot.ResamplingRepeatedSptCVCstf autoplot.ResamplingSptCVCstf plot.ResamplingRepeatedSptCVCstf plot.ResamplingSptCVCstf
(blockCV) Repeated spatial block resamplingmlr_resamplings_repeated_spcv_block ResamplingRepeatedSpCVBlock
(sperrorest) Repeated coordinate-based k-means clusteringmlr_resamplings_repeated_spcv_coords ResamplingRepeatedSpCVCoords
(sperrorest) Repeated spatial "disc" resamplingmlr_resamplings_repeated_spcv_disc ResamplingRepeatedSpCVDisc
(blockCV) Repeated "environmental blocking" resamplingmlr_resamplings_repeated_spcv_env ResamplingRepeatedSpCVEnv
(CAST) Repeated K-fold Nearest Neighbour Distance Matchingmlr_resamplings_repeated_spcv_knndm ResamplingRepeatedSpCVKnndm
(sperrorest) Repeated spatial "tiles" resamplingmlr_resamplings_repeated_spcv_tiles ResamplingRepeatedSpCVTiles
(CAST) Repeated spatiotemporal "leave-location-and-time-out" resamplingmlr_resamplings_repeated_sptcv_cstf ResamplingRepeatedSptCVCstf
(blockCV) Spatial block resamplingmlr_resamplings_spcv_block ResamplingSpCVBlock
(blockCV) Spatial buffering resamplingmlr_resamplings_spcv_buffer ResamplingSpCVBuffer
(sperrorest) Coordinate-based k-means clusteringmlr_resamplings_spcv_coords ResamplingSpCVCoords
(sperrorest) Spatial "disc" resamplingmlr_resamplings_spcv_disc ResamplingSpCVDisc
(blockCV) "Environmental blocking" resamplingmlr_resamplings_spcv_env ResamplingSpCVEnv
(CAST) K-fold Nearest Neighbour Distance Matchingmlr_resamplings_spcv_knndm ResamplingSpCVKnndm
(sperrorest) Spatial "Tiles" resamplingmlr_resamplings_spcv_tiles ResamplingSpCVTiles
(CAST) Spatiotemporal "Leave-location-and-time-out" resamplingmlr_resamplings_sptcv_cstf ResamplingSptCVCstf
Cookfarm Profiles Regression Taskcookfarm_mlr3 mlr_tasks_cookfarm_mlr3
Diplodia Classification Taskdiplodia mlr_tasks_diplodia
Ecuador Classification Taskecuador mlr_tasks_ecuador
Create a Spatiotemporal Classification TaskTaskClassifST
Create a Spatiotemporal Regression TaskTaskRegrST