
Package: mlr3spatiotempcv (via r-universe)
November 29, 2024

Title Spatiotemporal Resampling Methods for 'mlr3'

Version 2.3.2

Description Extends the mlr3 machine learning framework with
spatio-temporal resampling methods to account for the presence
of spatiotemporal autocorrelation (STAC) in predictor
variables. STAC may cause highly biased performance estimates
in cross-validation if ignored. A JSS article is available at
<doi:10.18637/jss.v111.i07>.

License LGPL-3

URL https://mlr3spatiotempcv.mlr-org.com/,

https://github.com/mlr-org/mlr3spatiotempcv,

https://mlr3book.mlr-org.com

BugReports https://github.com/mlr-org/mlr3spatiotempcv/issues

Depends mlr3 (>= 0.12.0), R (>= 3.5.0)

Imports checkmate, data.table, ggplot2 (>= 3.4.0), mlr3misc (>=
0.11.0), paradox, R6, utils

Suggests bbotk, blockCV (>= 3.1.2), caret, CAST (>= 0.8.0), ggsci,
ggtext, here, knitr, lgr, mlr3filters (>= 0.7.0.9000),
mlr3pipelines, mlr3spatial, mlr3tuning, patchwork, plotly,
rmarkdown, rpart, sf, sperrorest, terra, testthat (>= 3.0.0),
twosamples, vdiffr (>= 1.0.0), withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

LazyData true

NeedsCompilation no

RoxygenNote 7.3.2

1

https://doi.org/10.18637/jss.v111.i07
https://mlr3spatiotempcv.mlr-org.com/
https://github.com/mlr-org/mlr3spatiotempcv
https://mlr3book.mlr-org.com
https://github.com/mlr-org/mlr3spatiotempcv/issues

2 Contents

Collate 'aaa.R' 'ResamplingRepeatedSpCVBlock.R'
'ResamplingRepeatedSpCVCoords.R' 'ResamplingRepeatedSpCVDisc.R'
'ResamplingRepeatedSpCVEnv.R' 'ResamplingRepeatedSpCVTiles.R'
'ResamplingRepeatedSpCVknndm.R' 'ResamplingRepeatedSptCVCstf.R'
'ResamplingSpCVBlock.R' 'ResamplingSpCVBuffer.R'
'ResamplingSpCVCoords.R' 'ResamplingSpCVDisc.R'
'ResamplingSpCVEnv.R' 'ResamplingSpCVKnndm.R'
'ResamplingSpCVTiles.R' 'ResamplingSptCVCstf.R'
'TaskClassifST.R' 'TaskRegrST.R' 'Task_classif_diplodia.R'
'Task_classif_ecuador.R' 'Task_regr_cookfarm_profiles.R'
'as_task_classif_st.R' 'as_task_regr_st.R' 'autoplot.R'
'autoplot_all_folds_dt.R' 'autoplot_all_folds_list.R'
'autoplot_multi_fold_dt.R' 'autoplot_multi_fold_list.R'
'autoplot_spcv_cstf.R' 'bibentries.R' 'helper.R'
'helper_DataBackend.R' 'helper_autoplot.R' 'reexports.R'
'zzz.R'

Author Patrick Schratz [aut, cre]
(<https://orcid.org/0000-0003-0748-6624>), Marc Becker [aut]
(<https://orcid.org/0000-0002-8115-0400>), Jannes Muenchow
[ctb] (<https://orcid.org/0000-0001-7834-4717>), Michel Lang
[ctb] (<https://orcid.org/0000-0001-9754-0393>)

Maintainer Patrick Schratz <patrick.schratz@gmail.com>

Repository CRAN

Date/Publication 2024-11-29 13:10:02 UTC

Contents
mlr3spatiotempcv-package . 3
as_task_classif_st . 5
as_task_regr_st.TaskClassifST . 7
autoplot.ResamplingCustomCV . 10
autoplot.ResamplingCV . 11
autoplot.ResamplingSpCVBlock . 13
autoplot.ResamplingSpCVBuffer . 16
autoplot.ResamplingSpCVCoords . 18
autoplot.ResamplingSpCVDisc . 20
autoplot.ResamplingSpCVEnv . 22
autoplot.ResamplingSpCVKnndm . 24
autoplot.ResamplingSpCVTiles . 27
autoplot.ResamplingSptCVCstf . 29
mlr_resamplings_repeated_spcv_block . 32
mlr_resamplings_repeated_spcv_coords . 36
mlr_resamplings_repeated_spcv_disc . 38
mlr_resamplings_repeated_spcv_env . 40
mlr_resamplings_repeated_spcv_knndm . 42
mlr_resamplings_repeated_spcv_tiles . 46

https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-7834-4717
https://orcid.org/0000-0001-9754-0393

mlr3spatiotempcv-package 3

mlr_resamplings_repeated_sptcv_cstf . 49
mlr_resamplings_spcv_block . 51
mlr_resamplings_spcv_buffer . 54
mlr_resamplings_spcv_coords . 56
mlr_resamplings_spcv_disc . 58
mlr_resamplings_spcv_env . 60
mlr_resamplings_spcv_knndm . 61
mlr_resamplings_spcv_tiles . 64
mlr_resamplings_sptcv_cstf . 67
mlr_tasks_cookfarm_mlr3 . 69
mlr_tasks_diplodia . 70
mlr_tasks_ecuador . 71
TaskClassifST . 71
TaskRegrST . 74

Index 77

mlr3spatiotempcv-package

mlr3spatiotempcv: Spatiotemporal Resampling Methods for ’mlr3’

Description

Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account
for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause
highly biased performance estimates in cross-validation if ignored. A JSS article is available at
doi:10.18637/jss.v111.i07.

Main resources

• Book on mlr3: https://mlr3book.mlr-org.com

• mlr3book section about spatiotemporal data: https://mlr3book.mlr-org.com/chapters/
chapter13/beyond_regression_and_classification.html#spatiotemp-cv

• package vignettes: https://mlr3spatiotempcv.mlr-org.com/dev/articles/

Miscellaneous mlr3 content:
• Use cases and examples: https://mlr3gallery.mlr-org.com
• More classification and regression tasks: mlr3data
• Connector to OpenML: mlr3oml
• More classification and regression learners: mlr3learners
• Even more learners: https://github.com/mlr-org/mlr3extralearners
• Preprocessing and machine learning pipelines: mlr3pipelines
• Tuning of hyperparameters: mlr3tuning
• Visualizations for many mlr3 objects: mlr3viz
• Survival analysis and probabilistic regression: mlr3proba
• Cluster analysis: mlr3cluster

https://doi.org/10.18637/jss.v111.i07
https://mlr3book.mlr-org.com
https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#spatiotemp-cv
https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#spatiotemp-cv
https://mlr3spatiotempcv.mlr-org.com/dev/articles/
https://mlr3gallery.mlr-org.com
https://CRAN.R-project.org/package=mlr3data
https://www.openml.org
https://CRAN.R-project.org/package=mlr3oml
https://CRAN.R-project.org/package=mlr3learners
https://github.com/mlr-org/mlr3extralearners
https://CRAN.R-project.org/package=mlr3pipelines
https://CRAN.R-project.org/package=mlr3tuning
https://CRAN.R-project.org/package=mlr3viz
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/package=mlr3cluster

4 mlr3spatiotempcv-package

• Feature selection filters: mlr3filters
• Feature selection wrappers: mlr3fselect
• Interface to real (out-of-memory) data bases: mlr3db
• Performance measures as plain functions: mlr3measures
• Parallelization framework: future
• Progress bars: progressr

Author(s)

Maintainer: Patrick Schratz <patrick.schratz@gmail.com> (ORCID)

Authors:

• Marc Becker <marcbecker@posteo.de> (ORCID)

Other contributors:

• Jannes Muenchow <jannes.muenchow@uni-jena.de> (ORCID) [contributor]

• Michel Lang <michellang@gmail.com> (ORCID) [contributor]

References

Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A (2019). “Hyperparameter tuning and per-
formance assessment of statistical and machine-learning algorithms using spatial data.” Ecological
Modelling, 406, 109–120. doi:10.1016/j.ecolmodel.2019.06.002.

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for gener-
ating spatially or environmentally separated folds for k-fold cross-validation of species distribution
models.” bioRxiv. doi:10.1101/357798.

Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T (2018). “Improving performance of spatio-
temporal machine learning models using forward feature selection and target-oriented validation.”
Environmental Modelling & Software, 101, 1–9. doi:10.1016/j.envsoft.2017.12.001.

Zhao Y, Karypis G (2002). “Evaluation of Hierarchical Clustering Algorithms for Document
Datasets.” 11th Conference of Information and Knowledge Management (CIKM), 51-524. doi:10.1145/
584792.584877.

See Also

Useful links:

• https://mlr3spatiotempcv.mlr-org.com/

• https://github.com/mlr-org/mlr3spatiotempcv

• https://mlr3book.mlr-org.com

• Report bugs at https://github.com/mlr-org/mlr3spatiotempcv/issues

https://CRAN.R-project.org/package=mlr3filters
https://CRAN.R-project.org/package=mlr3fselect
https://CRAN.R-project.org/package=mlr3db
https://CRAN.R-project.org/package=mlr3measures
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=progressr
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0001-7834-4717
https://orcid.org/0000-0001-9754-0393
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1101/357798
https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1145/584792.584877
https://doi.org/10.1145/584792.584877
https://mlr3spatiotempcv.mlr-org.com/
https://github.com/mlr-org/mlr3spatiotempcv
https://mlr3book.mlr-org.com
https://github.com/mlr-org/mlr3spatiotempcv/issues

as_task_classif_st 5

as_task_classif_st Convert to a Spatiotemporal Classification Task

Description

Convert an object to a TaskClassifST. This is a S3 generic for the following objects:

1. TaskClassifST: Ensure the identity.

2. data.frame() and mlr3::DataBackend: Provides an alternative to the constructor of TaskClas-
sifST.

3. sf::sf: Extracts spatial meta data before construction.

4. mlr3::TaskRegr: Calls mlr3::convert_task().

Usage

as_task_classif_st(x, ...)

S3 method for class 'TaskClassifST'
as_task_classif_st(x, clone = FALSE, ...)

S3 method for class 'data.frame'
as_task_classif_st(
x,
target,
id = deparse(substitute(x)),
positive = NULL,
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
label = NA_character_,
...

)

S3 method for class 'DataBackend'
as_task_classif_st(
x,
target,
id = deparse(substitute(x)),
positive = NULL,
coordinate_names,
crs,
coords_as_features = FALSE,
label = NA_character_,
...

)

6 as_task_classif_st

S3 method for class 'sf'
as_task_classif_st(
x,
target = NULL,
id = deparse(substitute(x)),
positive = NULL,
coords_as_features = FALSE,
label = NA_character_,
...

)

Arguments

x (any)
Object to convert.

... (any)
Additional arguments.

clone (logical(1))
If TRUE, ensures that the returned object is not the same as the input x.

target (character(1))
Name of the target column.

id (character(1))
Id for the new task. Defaults to the (deparsed and substituted) name of the data
argument.

positive (character(1))
Only for binary classification: Name of the positive class. The levels of the tar-
get columns are reordered accordingly, so that the first element of $class_names
is the positive class, and the second element is the negative class.

coordinate_names

(character(1))
The column names of the coordinates in the data.

crs (character(1))
Coordinate reference system. WKT2 or EPSG string.

coords_as_features

(logical(1))
If TRUE, coordinates are used as features. This is a shortcut for task$set_col_roles(c("x",
"y"), role = "feature") with the assumption that the coordinates in the data
are named "x" and "y".

label (character(1))
Label for the new instance. Shown in as.data.table(mlr_tasks).

Value

TaskClassifST.

as_task_regr_st.TaskClassifST 7

Examples

if (mlr3misc::require_namespaces(c("sf"), quietly = TRUE)) {
library("mlr3")
data("ecuador", package = "mlr3spatiotempcv")

data.frame
as_task_classif_st(ecuador, target = "slides", positive = "TRUE",
coords_as_features = FALSE,
crs = "+proj=utm +zone=17 +south +datum=WGS84 +units=m +no_defs",
coordinate_names = c("x", "y"))

sf
ecuador_sf = sf::st_as_sf(ecuador, coords = c("x", "y"), crs = 32717)
as_task_classif_st(ecuador_sf, target = "slides", positive = "TRUE")

}

as_task_regr_st.TaskClassifST

Convert to a Spatiotemporal Regression Task

Description

Convert object to a TaskRegrST.

This is a S3 generic, specialized for at least the following objects:

1. TaskRegrST: Ensure the identity.

2. data.frame() and mlr3::DataBackend: Provides an alternative to the constructor of TaskRe-
grST.

3. sf::sf: Extracts spatial meta data before construction.

4. mlr3::TaskClassif: Calls mlr3::convert_task().

Usage

S3 method for class 'TaskClassifST'
as_task_regr_st(
x,
target = NULL,
drop_original_target = FALSE,
drop_levels = TRUE,
...

)

as_task_regr_st(x, ...)

S3 method for class 'TaskRegrST'
as_task_regr_st(x, clone = FALSE, ...)

8 as_task_regr_st.TaskClassifST

S3 method for class 'data.frame'
as_task_regr_st(
x,
target,
id = deparse(substitute(x)),
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
label = NA_character_,
...

)

S3 method for class 'DataBackend'
as_task_regr_st(
x,
target,
id = deparse(substitute(x)),
positive = NULL,
coordinate_names,
crs,
coords_as_features = FALSE,
label = NA_character_,
...

)

S3 method for class 'sf'
as_task_regr_st(
x,
target = NULL,
id = deparse(substitute(x)),
coords_as_features = FALSE,
label = NA_character_,
...

)

S3 method for class 'TaskClassifST'
as_task_regr_st(
x,
target = NULL,
drop_original_target = FALSE,
drop_levels = TRUE,
...

)

Arguments

x (any)
Object to convert.

as_task_regr_st.TaskClassifST 9

target (character(1))
Name of the target column.

drop_original_target

(logical(1))
If FALSE (default), the original target is added as a feature. Otherwise the origi-
nal target is dropped.

drop_levels (logical(1))
If TRUE (default), unused levels of the new target variable are dropped.

... (any)
Additional arguments.

clone (logical(1))
If TRUE, ensures that the returned object is not the same as the input x.

id (character(1))
Id for the new task. Defaults to the (deparsed and substituted) name of the data
argument.

coordinate_names

(character(1))
The column names of the coordinates in the data.

crs (character(1))
Coordinate reference system. WKT2 or EPSG string.

coords_as_features

(logical(1))
If TRUE, coordinates are used as features. This is a shortcut for task$set_col_roles(c("x",
"y"), role = "feature") with the assumption that the coordinates in the data
are named "x" and "y".

label (character(1))
Label for the new instance. Shown in as.data.table(mlr_tasks).

positive (character(1))
Only for binary classification: Name of the positive class. The levels of the tar-
get columns are reordered accordingly, so that the first element of $class_names
is the positive class, and the second element is the negative class.

Value

TaskRegrST

Examples

if (mlr3misc::require_namespaces(c("sf"), quietly = TRUE)) {
library("mlr3")
data("cookfarm_mlr3", package = "mlr3spatiotempcv")

data.frame
as_task_regr_st(cookfarm_mlr3, target = "PHIHOX",

coords_as_features = FALSE, crs = 26911,
coordinate_names = c("x", "y"))

10 autoplot.ResamplingCustomCV

sf
cookfarm_sf = sf::st_as_sf(cookfarm_mlr3, coords = c("x", "y"), crs = 26911)
as_task_regr_st(cookfarm_sf, target = "PHIHOX")

}

autoplot.ResamplingCustomCV

Visualization Functions for Non-Spatial CV Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods.

Usage

S3 method for class 'ResamplingCustomCV'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingCustomCV'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class mlr3::ResamplingCustomCV.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2

autoplot.ResamplingCV 11

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
x [Resampling]

mlr3 spatial resampling object of class mlr3::ResamplingCustomCV.

See Also

• mlr3book chapter on "Spatial Analysis"

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingSpCVDisc()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingCV()

• autoplot.ResamplingSptCVCstf()

Examples

if (mlr3misc::require_namespaces(c("sf", "patchwork"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
breaks = quantile(task$data()$dem, seq(0, 1, length = 6))
zclass = cut(task$data()$dem, breaks, include.lowest = TRUE)

resampling = rsmp("custom_cv")
resampling$instantiate(task, f = zclass)

autoplot(resampling, task) +
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

autoplot(resampling, task, fold_id = 1)
autoplot(resampling, task, fold_id = c(1, 2)) *

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}

autoplot.ResamplingCV Visualization Functions for Non-Spatial CV Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods.

https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal

12 autoplot.ResamplingCV

Usage

S3 method for class 'ResamplingCV'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedCV'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingCV'
plot(x, ...)

S3 method for class 'ResamplingRepeatedCV'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class mlr3::ResamplingCV or mlr3::ResamplingRepeatedCV.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2

autoplot.ResamplingSpCVBlock 13

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
repeats_id [numeric]

Repetition ID to plot.
x [Resampling]

mlr3 spatial resampling object of class mlr3::ResamplingCV or mlr3::ResamplingRepeatedCV.

See Also

• mlr3book chapter on "Spatial Analysis"

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingSpCVDisc()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingSptCVCstf()

Examples

if (mlr3misc::require_namespaces(c("sf", "patchwork", "ggtext", "ggsci"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("cv")
resampling$instantiate(task)

autoplot(resampling, task) +
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

autoplot(resampling, task, fold_id = 1)
autoplot(resampling, task, fold_id = c(1, 2)) *

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}

autoplot.ResamplingSpCVBlock

Visualization Functions for SpCV Block Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling
objects.

https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal

14 autoplot.ResamplingSpCVBlock

Usage

S3 method for class 'ResamplingSpCVBlock'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
show_blocks = FALSE,
show_labels = FALSE,
sample_fold_n = NULL,
label_size = 2,
...

)

S3 method for class 'ResamplingRepeatedSpCVBlock'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
show_blocks = FALSE,
show_labels = FALSE,
sample_fold_n = NULL,
label_size = 2,
...

)

S3 method for class 'ResamplingSpCVBlock'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSpCVBlock'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBlock or Resamplin-
gRepeatedSpCVBlock.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]

autoplot.ResamplingSpCVBlock 15

Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

show_blocks [logical(1)]
Whether to show an overlay of the spatial blocks polygons.

show_labels [logical(1)]
Whether to show an overlay of the spatial block IDs.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

label_size [numeric(1)]
Label size of block labels. Only applies for show_labels = TRUE.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
repeats_id [numeric]

Repetition ID to plot.
x [Resampling]

mlr3 spatial resampling object. One of class ResamplingSpCVBuffer, Resam-
plingSpCVBlock, ResamplingSpCVCoords, ResamplingSpCVEnv.

Details

By default a plot is returned; if fold_id is set, a gridded plot is created. If plot_as_grid = FALSE,
a list of plot objects is returned. This can be used to align the plots individually.

When no single fold is selected, the ggsci::scale_color_ucscgb() palette is used to display all
partitions. If you want to change the colors, call <plot> + <color-palette>().

Value

ggplot2::ggplot() or list of ggplot2 objects.

See Also

• mlr3book chapter on "Spatial Analysis"

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingSpCVDisc()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingCV()

• autoplot.ResamplingSptCVCstf()

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2
https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal

16 autoplot.ResamplingSpCVBuffer

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_block", range = 1000L)
resampling$instantiate(task)

list of ggplot2 resamplings
plot_list = autoplot(resampling, task,
crs = 4326,
fold_id = c(1, 2), plot_as_grid = FALSE)

Visualize all partitions
autoplot(resampling, task) +

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

Visualize the train/test split of a single fold
autoplot(resampling, task, fold_id = 1) +

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

Visualize train/test splits of multiple folds
autoplot(resampling, task,

fold_id = c(1, 2),
show_blocks = TRUE) *
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

}

autoplot.ResamplingSpCVBuffer

Visualization Functions for SpCV Buffer Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling
objects.

Usage

S3 method for class 'ResamplingSpCVBuffer'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
show_omitted = FALSE,

autoplot.ResamplingSpCVBuffer 17

...
)

S3 method for class 'ResamplingSpCVBuffer'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

show_omitted [logical]
Whether to show points not used in train or test set for the current fold.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
x [Resampling]

mlr3 spatial resampling object of class ResamplingSpCVBuffer.

See Also

• mlr3book chapter on "Spatial Analysis"

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingCV()

• autoplot.ResamplingSptCVCstf()

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_buffer", theRange = 1000)
resampling$instantiate(task)

single fold

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2
https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal

18 autoplot.ResamplingSpCVCoords

autoplot(resampling, task, fold_id = 1) +
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

multiple folds
autoplot(resampling, task, fold_id = c(1, 2)) *

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}

autoplot.ResamplingSpCVCoords

Visualization Functions for SpCV Coords Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods.

Usage

S3 method for class 'ResamplingSpCVCoords'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedSpCVCoords'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingSpCVCoords'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSpCVCoords'
plot(x, ...)

autoplot.ResamplingSpCVCoords 19

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVCoords or Resamplin-
gRepeatedSpCVCoords.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
repeats_id [numeric]

Repetition ID to plot.
x [Resampling]

mlr3 spatial resampling object of class ResamplingSpCVCoords or Resamplin-
gRepeatedSpCVCoords.

See Also

• mlr3book chapter on "Spatial Analysis"

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingSpCVDisc()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingCV()

• autoplot.ResamplingSptCVCstf()

Examples

if (mlr3misc::require_namespaces(c("sf"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_coords")

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2
https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal

20 autoplot.ResamplingSpCVDisc

resampling$instantiate(task)

autoplot(resampling, task) +
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

autoplot(resampling, task, fold_id = 1)
autoplot(resampling, task, fold_id = c(1, 2)) *

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}

autoplot.ResamplingSpCVDisc

Visualization Functions for SpCV Disc Method.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling
objects.

Usage

S3 method for class 'ResamplingSpCVDisc'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
repeats_id = NULL,
show_omitted = FALSE,
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedSpCVDisc'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
show_omitted = FALSE,
sample_fold_n = NULL,
...

)

autoplot.ResamplingSpCVDisc 21

S3 method for class 'ResamplingSpCVDisc'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSpCVDisc'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBlock or Resamplin-
gRepeatedSpCVBlock.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

repeats_id [numeric]
Repetition ID to plot.

show_omitted [logical]
Whether to show points not used in train or test set for the current fold.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
x [Resampling]

mlr3 spatial resampling object. One of class ResamplingSpCVBuffer, Resam-
plingSpCVBlock, ResamplingSpCVCoords, ResamplingSpCVEnv.

Details

This method requires to set argument fold_id and no plot containing all partitions can be created.
This is because the method does not make use of all observations but only a subset of them (many
observations are left out). Hence, train and test sets of one fold are not re-used in other folds as in
other methods and plotting these without a train/test indicator would not make sense.

2D vs 3D plotting

This method has both a 2D and a 3D plotting method. The 2D method returns a ggplot with x and
y axes representing the spatial coordinates. The 3D method uses plotly to create an interactive 3D

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2

22 autoplot.ResamplingSpCVEnv

plot. Set plot3D = TRUE to use the 3D method.

Note that spatiotemporal datasets usually suffer from overplotting in 2D mode.

See Also

• mlr3book chapter on "Spatial Analysis"

• Vignette Spatiotemporal Visualization.

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingCV()

Examples

if (mlr3misc::require_namespaces("sf", quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_disc",
folds = 5, radius = 200L, buffer = 200L)

resampling$instantiate(task)

autoplot(resampling, task,
fold_id = 1,
show_omitted = TRUE, size = 0.7) *
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

}

autoplot.ResamplingSpCVEnv

Visualization Functions for SpCV Env Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods.

Usage

S3 method for class 'ResamplingSpCVEnv'
autoplot(
object,
task,
fold_id = NULL,

https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal
https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html

autoplot.ResamplingSpCVEnv 23

plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedSpCVEnv'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingSpCVEnv'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSpCVEnv'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVEnv or ResamplingRe-
peatedSpCVEnv.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2

24 autoplot.ResamplingSpCVKnndm

repeats_id [numeric]
Repetition ID to plot.

x [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVEnv or ResamplingRe-
peatedSpCVEnv.

See Also

• mlr3book chapter on "Spatial Analysis"

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVDisc()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingCV()

• autoplot.ResamplingSptCVCstf()

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_env", folds = 4, features = "dem")
resampling$instantiate(task)

autoplot(resampling, task) +
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

autoplot(resampling, task, fold_id = 1)
autoplot(resampling, task, fold_id = c(1, 2)) *

ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}

autoplot.ResamplingSpCVKnndm

Visualization Functions for SpCV knndm Method.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling
objects.

https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal

autoplot.ResamplingSpCVKnndm 25

Usage

S3 method for class 'ResamplingSpCVKnndm'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
repeats_id = NULL,
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedSpCVKnndm'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingSpCVKnndm'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSpCVKnndm'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBlock or Resamplin-
gRepeatedSpCVBlock.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2

26 autoplot.ResamplingSpCVKnndm

test_color [character(1)]
The color to use for the test set observations.

repeats_id [numeric]
Repetition ID to plot.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
x [Resampling]

mlr3 spatial resampling object. One of class ResamplingSpCVBuffer, Resam-
plingSpCVBlock, ResamplingSpCVCoords, ResamplingSpCVEnv.

Details

This method requires to set argument fold_id and no plot containing all partitions can be created.
This is because the method does not make use of all observations but only a subset of them (many
observations are left out). Hence, train and test sets of one fold are not re-used in other folds as in
other methods and plotting these without a train/test indicator would not make sense.

2D vs 3D plotting

This method has both a 2D and a 3D plotting method. The 2D method returns a ggplot with x and
y axes representing the spatial coordinates. The 3D method uses plotly to create an interactive 3D
plot. Set plot3D = TRUE to use the 3D method.

Note that spatiotemporal datasets usually suffer from overplotting in 2D mode.

See Also

• mlr3book chapter on "Spatial Analysis"

• Vignette Spatiotemporal Visualization.

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVTiles()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingCV()

Examples

if (mlr3misc::require_namespaces(c("CAST", "sf"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
points = sf::st_as_sf(task$coordinates(), crs = task$crs, coords = c("x", "y"))
modeldomain = sf::st_as_sfc(sf::st_bbox(points))

https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal
https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html

autoplot.ResamplingSpCVTiles 27

resampling = rsmp("spcv_knndm",
folds = 5, modeldomain = modeldomain)

resampling$instantiate(task)

autoplot(resampling, task,
fold_id = 1, size = 0.7) *
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

}

autoplot.ResamplingSpCVTiles

Visualization Functions for SpCV Tiles Method.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling
objects.

Usage

S3 method for class 'ResamplingSpCVTiles'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
repeats_id = NULL,
show_omitted = FALSE,
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedSpCVTiles'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
show_omitted = FALSE,
sample_fold_n = NULL,
...

)

28 autoplot.ResamplingSpCVTiles

S3 method for class 'ResamplingSpCVTiles'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSpCVTiles'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBlock or Resamplin-
gRepeatedSpCVBlock.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]
The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

repeats_id [numeric]
Repetition ID to plot.

show_omitted [logical]
Whether to show points not used in train or test set for the current fold.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed to geom_sf(). Helpful for adjusting point sizes and shapes.
x [Resampling]

mlr3 spatial resampling object. One of class ResamplingSpCVBuffer, Resam-
plingSpCVBlock, ResamplingSpCVCoords, ResamplingSpCVEnv.

Details

Specific combinations of arguments of "spcv_tiles" remove some observations, hence show_omitted
has an effect in some cases.

See Also

• mlr3book chapter on "Spatial Analysis"

• Vignette Spatiotemporal Visualization.

• autoplot.ResamplingSpCVBlock()

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2
https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#sec-spatiotemporal
https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html

autoplot.ResamplingSptCVCstf 29

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVDisc()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingCV()

Examples

if (mlr3misc::require_namespaces(c("sf", "sperrorest"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_tiles",
nsplit = c(4L, 3L), reassign = FALSE)

resampling$instantiate(task)

autoplot(resampling, task,
fold_id = 1,
show_omitted = TRUE, size = 0.7) *
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))

}

autoplot.ResamplingSptCVCstf

Visualization Functions for SptCV Cstf Methods.

Description

Generic S3 plot() and autoplot() (ggplot2) methods to visualize mlr3 spatiotemporal resampling
objects.

Usage

S3 method for class 'ResamplingSptCVCstf'
autoplot(
object,
task,
fold_id = NULL,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
repeats_id = NULL,
tickformat_date = "%Y-%m",
nticks_x = 3,
nticks_y = 3,
point_size = 3,

30 autoplot.ResamplingSptCVCstf

axis_label_fontsize = 11,
static_image = FALSE,
show_omitted = FALSE,
plot3D = NULL,
plot_time_var = NULL,
sample_fold_n = NULL,
...

)

S3 method for class 'ResamplingRepeatedSptCVCstf'
autoplot(
object,
task,
fold_id = NULL,
repeats_id = 1,
plot_as_grid = TRUE,
train_color = "#0072B5",
test_color = "#E18727",
tickformat_date = "%Y-%m",
nticks_x = 3,
nticks_y = 3,
point_size = 3,
axis_label_fontsize = 11,
plot3D = NULL,
plot_time_var = NULL,
...

)

S3 method for class 'ResamplingSptCVCstf'
plot(x, ...)

S3 method for class 'ResamplingRepeatedSptCVCstf'
plot(x, ...)

Arguments

object [Resampling]
mlr3 spatial resampling object of class ResamplingSptCVCstf or Resamplin-
gRepeatedSptCVCstf.

task [TaskClassifST]/[TaskRegrST]
mlr3 task object.

fold_id [numeric]
Fold IDs to plot.

plot_as_grid [logical(1)]
Should a gridded plot using via patchwork be created? If FALSE a list with
of ggplot2 objects is returned. Only applies if a numeric vector is passed to
argument fold_id.

train_color [character(1)]

https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=ggplot2

autoplot.ResamplingSptCVCstf 31

The color to use for the training set observations.

test_color [character(1)]
The color to use for the test set observations.

repeats_id [numeric]
Repetition ID to plot.

tickformat_date

[character]
Date format for z-axis.

nticks_x [integer]
Number of x axis breaks.

nticks_y [integer]
Number of y axis breaks.

point_size [numeric]
Point size of markers.

axis_label_fontsize

[integer]
Font size of axis labels.

static_image [logical]
Whether to create a static image from the plotly plot via plotly::orca(). This
requires the orca utility to be available. See https://github.com/plotly/
orca for more information. When used, by default a file named plot.png is
created in the current working directory.

show_omitted [logical]
Whether to show points not used in train or test set for the current fold.

plot3D [logical]
Whether to create a 2D image via ggplot2 or a 3D plot via plotly.

plot_time_var [character]
The variable to use for the z-axis (time). Remove the column role feature for
this variable to only use it for plotting.

sample_fold_n [integer]
Number of points in a random sample stratified over partitions. This argument
aims to keep file sizes of resulting plots reasonable and reduce overplotting in
dense datasets.

... Passed down to plotly::orca(). Only effective when static_image = TRUE.

x [Resampling]
mlr3 spatial resampling object of class ResamplingSptCVCstf or Resamplin-
gRepeatedSptCVCstf.

Details

This method requires to set argument fold_id. No plot showing all folds in one plot can be created.
This is because the LLTO method does not make use of all observations but only a subset of them
(many observations are omitted). Hence, train and test sets of one fold are not re-used in other folds
as in other methods and plotting these without a train/test indicator would be misleading.

https://github.com/plotly/orca
https://github.com/plotly/orca

32 mlr_resamplings_repeated_spcv_block

2D vs 3D plotting

This method has both a 2D and a 3D plotting method. The 2D method returns a ggplot with x and
y axes representing the spatial coordinates. The 3D method uses plotly to create an interactive 3D
plot. Set plot3D = TRUE to use the 3D method.

Note that spatiotemporal datasets usually suffer from overplotting in 2D mode.

See Also

• mlr3book chapter on "Spatiotemporal Visualization"

• Vignette Spatiotemporal Visualization.

• autoplot.ResamplingSpCVBlock()

• autoplot.ResamplingSpCVBuffer()

• autoplot.ResamplingSpCVCoords()

• autoplot.ResamplingSpCVEnv()

• autoplot.ResamplingCV()

Examples

if (mlr3misc::require_namespaces(c("sf", "plotly"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task_st = tsk("cookfarm_mlr3")
task_st$set_col_roles("SOURCEID", "space")
task_st$set_col_roles("Date", "time")
resampling = rsmp("sptcv_cstf", folds = 5)
resampling$instantiate(task_st)

with both `"space"` and `"time"` column roles set (LLTO), the omitted
observations per fold can be shown by setting `show_omitted = TRUE`
autoplot(resampling, task_st, fold_id = 1, show_omitted = TRUE)

}

mlr_resamplings_repeated_spcv_block

(blockCV) Repeated spatial block resampling

Description

This function creates spatially separated folds based on a distance to number of row and/or column.
It assigns blocks to the training and testing folds randomly, systematically or in a checkerboard
pattern. The distance (size) should be in metres, regardless of the unit of the reference system
of the input data (for more information see the details section). By default, the function creates
blocks according to the extent and shape of the spatial sample data (x e.g. the species occurrence),
Alternatively, blocks can be created based on r assuming that the user has considered the landscape

https://mlr3book.mlr-org.com/chapters/chapter13/beyond_regression_and_classification.html#spatiotemp-cv
https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html

mlr_resamplings_repeated_spcv_block 33

for the given species and case study. Blocks can also be offset so the origin is not at the outer corner
of the rasters. Instead of providing a distance, the blocks can also be created by specifying a number
of rows and/or columns and divide the study area into vertical or horizontal bins, as presented in
Wenger & Olden (2012) and Bahn & McGill (2012). Finally, the blocks can be specified by a
user-defined spatial polygon layer.

Details

To maintain consistency, all functions in this package use meters as their unit of measurement.
However, when the input map has a geographic coordinate system (in decimal degrees), the block
size is calculated by dividing the size parameter by deg_to_metre (which defaults to 111325 me-
ters, the standard distance of one degree of latitude on the Equator). In reality, this value varies by a
factor of the cosine of the latitude. So, an alternative sensible value could be cos(mean(sf::st_bbox(x)[c(2,4)])
* pi/180) * 111325.

The offset can be used to change the spatial position of the blocks. It can also be used to assess the
sensitivity of analysis results to shifting in the blocking arrangements. These options are available
when size is defined. By default the region is located in the middle of the blocks and by setting the
offsets, the blocks will shift.

Roberts et. al. (2017) suggest that blocks should be substantially bigger than the range of spatial
autocorrelation (in model residual) to obtain realistic error estimates, while a buffer with the size
of the spatial autocorrelation range would result in a good estimation of error. This is because of
the so-called edge effect (O’Sullivan & Unwin, 2014), whereby points located on the edges of the
blocks of opposite sets are not separated spatially. Blocking with a buffering strategy overcomes
this issue (see cv_buffer).

mlr3spatiotempcv notes

By default blockCV::cv_spatial() does not allow the creation of multiple repetitions. mlr3spatiotempcv
adds support for this when using the size argument for fold creation. When supplying a vector of
length(repeats) for argument size, these different settings will be used to create folds which
differ among the repetitions.

Multiple repetitions are not possible when using the "row & cols" approach because the created
folds will always be the same.

The ’Description’ and ’Details’ fields are inherited from the respective upstream function.

For a list of available arguments, please see blockCV::cv_spatial.

blockCV >= 3.0.0 changed the argument names of the implementation. For backward compatibility,
mlr3spatiotempcv is still using the old ones. Here’s a list which shows the mapping between
blockCV < 3.0.0 and blockCV >= 3.0.0:

• range -> size

• rasterLayer -> r

• speciesData -> points

• showBlocks -> plot

• cols and rows -> rows_cols

The default of argument hexagon is different in mlr3spatiotempcv (FALSE instead of TRUE) to
create square blocks instead of hexagonal blocks by default.

34 mlr_resamplings_repeated_spcv_block

Parameters

• repeats (integer(1))
Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVBlock

Public fields

blocks sf | list of sf objects
Polygons (sf objects) as returned by blockCV which grouped observations into partitions.

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:

• ResamplingRepeatedSpCVBlock$new()

• ResamplingRepeatedSpCVBlock$folds()

• ResamplingRepeatedSpCVBlock$repeats()

• ResamplingRepeatedSpCVBlock$instantiate()

• ResamplingRepeatedSpCVBlock$clone()

Method new(): Create an "spatial block" repeated resampling instance.
For a list of available arguments, please see blockCV::cv_spatial.

Usage:
ResamplingRepeatedSpCVBlock$new(id = "repeated_spcv_block")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:
ResamplingRepeatedSpCVBlock$folds(iters)

Arguments:

iters integer()
Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:
ResamplingRepeatedSpCVBlock$repeats(iters)

mlr_resamplings_repeated_spcv_block 35

Arguments:

iters integer()
Iteration number.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingRepeatedSpCVBlock$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingRepeatedSpCVBlock$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for gener-
ating spatially or environmentally separated folds for k-fold cross-validation of species distribution
models.” bioRxiv. doi:10.1101/357798.

Examples

Not run:
if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {

library(mlr3)
task = tsk("diplodia")

Instantiate Resampling
rrcv = rsmp("repeated_spcv_block",

folds = 3, repeats = 2,
range = c(5000L, 10000L))

rrcv$instantiate(task)

Individual sets:
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

Internal storage:
rrcv$instance # table

}

https://doi.org/10.1101/357798

36 mlr_resamplings_repeated_spcv_coords

End(Not run)

mlr_resamplings_repeated_spcv_coords

(sperrorest) Repeated coordinate-based k-means clustering

Description

Splits data by clustering in the coordinate space. See the upstream implementation at sperrorest::partition_kmeans()
and Brenning (2012) for further information.

Details

Universal partitioning method that splits the data in the coordinate space. Useful for spatially homo-
geneous datasets that cannot be split well with rectangular approaches like ResamplingSpCVBlock.

Parameters

• folds (integer(1))
Number of folds.

• repeats (integer(1))
Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVCoords

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingRepeatedSpCVCoords$new()

• ResamplingRepeatedSpCVCoords$folds()

• ResamplingRepeatedSpCVCoords$repeats()

• ResamplingRepeatedSpCVCoords$instantiate()

• ResamplingRepeatedSpCVCoords$clone()

Method new(): Create an "coordinate-based" repeated resampling instance.
For a list of available arguments, please see sperrorest::partition_cv.

Usage:
ResamplingRepeatedSpCVCoords$new(id = "repeated_spcv_coords")

mlr_resamplings_repeated_spcv_coords 37

Arguments:
id character(1)

Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:
ResamplingRepeatedSpCVCoords$folds(iters)

Arguments:
iters integer()

Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:
ResamplingRepeatedSpCVCoords$repeats(iters)

Arguments:
iters integer()

Iteration number.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingRepeatedSpCVCoords$instantiate(task)

Arguments:
task mlr3::Task

A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingRepeatedSpCVCoords$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules
in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote
Sensing Symposium. doi:10.1109/igarss.2012.6352393.

Examples

library(mlr3)
task = tsk("diplodia")

Instantiate Resampling
rrcv = rsmp("repeated_spcv_coords", folds = 3, repeats = 5)
rrcv$instantiate(task)

https://doi.org/10.1109/igarss.2012.6352393

38 mlr_resamplings_repeated_spcv_disc

Individual sets:
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

Internal storage:
rrcv$instance # table

mlr_resamplings_repeated_spcv_disc

(sperrorest) Repeated spatial "disc" resampling

Description

(sperrorest) Repeated spatial "disc" resampling

(sperrorest) Repeated spatial "disc" resampling

Parameters

• repeats (integer(1))
Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVDisc

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingRepeatedSpCVDisc$new()

• ResamplingRepeatedSpCVDisc$folds()

• ResamplingRepeatedSpCVDisc$repeats()

• ResamplingRepeatedSpCVDisc$instantiate()

• ResamplingRepeatedSpCVDisc$clone()

Method new(): Create a "Spatial ’Disc’ resampling" resampling instance.
For a list of available arguments, please see sperrorest::partition_disc.

mlr_resamplings_repeated_spcv_disc 39

Usage:

ResamplingRepeatedSpCVDisc$new(id = "repeated_spcv_disc")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:

ResamplingRepeatedSpCVDisc$folds(iters)

Arguments:

iters integer()
Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:

ResamplingRepeatedSpCVDisc$repeats(iters)

Arguments:

iters integer()
Iteration number.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:

ResamplingRepeatedSpCVDisc$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResamplingRepeatedSpCVDisc$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules
in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote
Sensing Symposium. doi:10.1109/igarss.2012.6352393.

https://doi.org/10.1109/igarss.2012.6352393

40 mlr_resamplings_repeated_spcv_env

Examples

library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rrcv = rsmp("repeated_spcv_disc",

folds = 3L, repeats = 2,
radius = 200L, buffer = 200L)

rrcv$instantiate(task)

Individual sets:
rrcv$iters
rrcv$folds(1:6)
rrcv$repeats(1:6)

Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

Internal storage:
rrcv$instance # table

mlr_resamplings_repeated_spcv_env

(blockCV) Repeated "environmental blocking" resampling

Description

Splits data by clustering in the feature space. See the upstream implementation at blockCV::cv_cluster()
and Valavi et al. (2018) for further information.

Details

Useful when the dataset is supposed to be split on environmental information which is present in
features. The method allows for a combination of multiple features for clustering.

The input of raster images directly as in blockCV::cv_cluster() is not supported. See mlr3spatial
and its raster DataBackends for such support in mlr3.

Parameters

• folds (integer(1))
Number of folds.

• features (character())
The features to use for clustering.

• repeats (integer(1))
Number of repeats.

https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3

mlr_resamplings_repeated_spcv_env 41

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVEnv

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:

• ResamplingRepeatedSpCVEnv$new()

• ResamplingRepeatedSpCVEnv$folds()

• ResamplingRepeatedSpCVEnv$repeats()

• ResamplingRepeatedSpCVEnv$instantiate()

• ResamplingRepeatedSpCVEnv$clone()

Method new(): Create an "Environmental Block" repeated resampling instance.
For a list of available arguments, please see blockCV::cv_cluster.

Usage:
ResamplingRepeatedSpCVEnv$new(id = "repeated_spcv_env")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:
ResamplingRepeatedSpCVEnv$folds(iters)

Arguments:

iters integer()
Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:
ResamplingRepeatedSpCVEnv$repeats(iters)

Arguments:

iters integer()
Iteration number.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingRepeatedSpCVEnv$instantiate(task)

Arguments:

42 mlr_resamplings_repeated_spcv_knndm

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResamplingRepeatedSpCVEnv$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for gener-
ating spatially or environmentally separated folds for k-fold cross-validation of species distribution
models.” bioRxiv. doi:10.1101/357798.

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rrcv = rsmp("repeated_spcv_env", folds = 4, repeats = 2)
rrcv$instantiate(task)

Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

Internal storage:
rrcv$instance

}

mlr_resamplings_repeated_spcv_knndm

(CAST) Repeated K-fold Nearest Neighbour Distance Matching

Description

This function implements the kNNDM algorithm and returns the necessary indices to perform a
k-fold NNDM CV for map validation.

https://doi.org/10.1101/357798

mlr_resamplings_repeated_spcv_knndm 43

Details

knndm is a k-fold version of NNDM LOO CV for medium and large datasets. Brielfy, the algorithm
tries to find a k-fold configuration such that the integral of the absolute differences (Wasserstein W
statistic) between the empirical nearest neighbour distance distribution function between the test and
training data during CV (Gj*), and the empirical nearest neighbour distance distribution function
between the prediction and training points (Gij), is minimised. It does so by performing clustering
of the training points’ coordinates for different numbers of clusters that range from k to N (number
of observations), merging them into k final folds, and selecting the configuration with the lowest W.

Using a projected CRS in ‘knndm‘ has large computational advantages since fast nearest neighbour
search can be done via the ‘FNN‘ package, while working with geographic coordinates requires
computing the full spherical distance matrices. As a clustering algorithm, ‘kmeans‘ can only be used
for projected CRS while ‘hierarchical‘ can work with both projected and geographical coordinates,
though it requires calculating the full distance matrix of the training points even for a projected
CRS.

In order to select between clustering algorithms and number of folds ‘k‘, different ‘knndm‘ config-
urations can be run and compared, being the one with a lower W statistic the one that offers a better
match. W statistics between ‘knndm‘ runs are comparable as long as ‘tpoints‘ and ‘predpoints‘ or
‘modeldomain‘ stay the same.

Map validation using ‘knndm‘ should be used using ‘CAST::global_validation‘, i.e. by stacking
all out-of-sample predictions and evaluating them all at once. The reasons behind this are 1) The
resulting folds can be unbalanced and 2) nearest neighbour functions are constructed and matched
using all CV folds simultaneously.

If training data points are very clustered with respect to the prediction area and the presented ‘kn-
ndm‘ configuration still show signs of Gj* > Gij, there are several things that can be tried. First,
increase the ‘maxp‘ parameter; this may help to control for strong clustering (at the cost of having
unbalanced folds). Secondly, decrease the number of final folds ‘k‘, which may help to have larger
clusters.

The ‘modeldomain‘ is either a sf polygon that defines the prediction area, or alternatively a Spa-
tRaster out of which a polygon, transformed into the CRS of the training points, is defined as the
outline of all non-NA cells. Then, the function takes a regular point sample (amount defined by
‘samplesize‘) from the spatial extent. As an alternative use ‘predpoints‘ instead of ‘modeldomain‘,
if you have already defined the prediction locations (e.g. raster pixel centroids). When using either
‘modeldomain‘ or ‘predpoints‘, we advise to plot the study area polygon and the training/prediction
points as a previous step to ensure they are aligned.

‘knndm‘ can also be performed in the feature space by setting ‘space‘ to "feature". Euclidean
distances or Mahalanobis distances can be used for distance calculation, but only Euclidean are
tested. In this case, nearest neighbour distances are calculated in n-dimensional feature space rather
than in geographical space. ‘tpoints‘ and ‘predpoints‘ can be data frames or sf objects containing
the values of the features. Note that the names of ‘tpoints‘ and ‘predpoints‘ must be the same.
‘predpoints‘ can also be missing, if ‘modeldomain‘ is of class SpatRaster. In this case, the values of
of the SpatRaster will be extracted to the ‘predpoints‘. In the case of any categorical features, Gower
distances will be used to calculate the Nearest Neighbour distances [Experimental]. If categorical
features are present, and ‘clustering‘ = "kmeans", K-Prototype clustering will be performed instead.

Parameters

• folds (integer(1))

44 mlr_resamplings_repeated_spcv_knndm

Number of folds.

• stratify
If TRUE, stratify on the target column.

• repeats (integer(1))
Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVKnndm

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingRepeatedSpCVKnndm$new()

• ResamplingRepeatedSpCVKnndm$folds()

• ResamplingRepeatedSpCVKnndm$repeats()

• ResamplingRepeatedSpCVKnndm$instantiate()

• ResamplingRepeatedSpCVKnndm$clone()

Method new(): Create a "K-fold Nearest Neighbour Distance Matching" resampling instance.

Usage:
ResamplingRepeatedSpCVKnndm$new(id = "repeated_spcv_knndm")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:
ResamplingRepeatedSpCVKnndm$folds(iters)

Arguments:

iters integer()
Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:
ResamplingRepeatedSpCVKnndm$repeats(iters)

Arguments:

iters integer()
Iteration number.

mlr_resamplings_repeated_spcv_knndm 45

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:

ResamplingRepeatedSpCVKnndm$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResamplingRepeatedSpCVKnndm$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Linnenbrink, J., Mila, C., Ludwig, M., Meyer, H. (2023). “kNNDM: k-fold Nearest Neighbour Dis-
tance Matching Cross-Validation for map accuracy estimation.” EGUsphere, 2023, 1–16. doi:10.5194/
egusphere20231308, https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1308/.

Examples

library(mlr3)
library(mlr3spatial)
set.seed(42)
simarea = list(matrix(c(0, 0, 0, 100, 100, 100, 100, 0, 0, 0), ncol = 2, byrow = TRUE))
simarea = sf::st_polygon(simarea)
train_points = sf::st_sample(simarea, 1000, type = "random")
train_points = sf::st_as_sf(train_points)
train_points$target = as.factor(sample(c("TRUE", "FALSE"), 1000, replace = TRUE))
pred_points = sf::st_sample(simarea, 1000, type = "regular")

task = mlr3spatial::as_task_classif_st(sf::st_as_sf(train_points), "target", positive = "TRUE")

cv_knndm = rsmp("repeated_spcv_knndm", predpoints = pred_points, repeats = 2)
cv_knndm$instantiate(task)
#' ### Individual sets:
cv_knndm$train_set(1)
cv_knndm$test_set(1)
check that no obs are in both sets
intersect(cv_knndm$train_set(1), cv_knndm$test_set(1)) # good!

Internal storage:
cv_knndm$instance # table

https://doi.org/10.5194/egusphere-2023-1308
https://doi.org/10.5194/egusphere-2023-1308
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1308/

46 mlr_resamplings_repeated_spcv_tiles

mlr_resamplings_repeated_spcv_tiles

(sperrorest) Repeated spatial "tiles" resampling

Description

Spatial partitioning using rectangular tiles. Small partitions can optionally be merged into adjacent
ones to avoid partitions with too few observations. This method is similar to ResamplingSpCVBlock
by making use of rectangular zones in the coordinate space. See the upstream implementation at
sperrorest::partition_disc() and Brenning (2012) for further information.

Parameters

• dsplit (integer(2))
Equidistance of splits in (possibly rotated) x direction (dsplit[1]) and y direction (dsplit[2])
used to define tiles. If dsplit is of length 1, its value is recycled. Either dsplit or nsplit must
be specified.

• nsplit (integer(2))
Number of splits in (possibly rotated) x direction (nsplit[1]) and y direction (nsplit[2])
used to define tiles. If nsplit is of length 1, its value is recycled.

• rotation (character(1))
Whether and how the rectangular grid should be rotated; random rotation is only possible
between -45 and +45 degrees. Accepted values: One of c("none", "random", "user").

• user_rotation (character(1))
Only used when rotation = "user". Angle(s) (in degrees) by which the rectangular grid is
to be rotated in each repetition. Either a vector of same length as repeats, or a single number
that will be replicated length(repeats) times.

• offset (logical(1))
Whether and how the rectangular grid should be shifted by an offset. Accepted values: One
of c("none", "random", "user").

• user_offset (logical(1))
Only used when offset = "user". A list (or vector) of two components specifying a shift
of the rectangular grid in (possibly rotated) x and y direction. The offset values are relative
values, a value of 0.5 resulting in a one-half tile shift towards the left, or upward. If this is
a list, its first (second) component refers to the rotated x (y) direction, and both components
must have same length as repeats (or length 1). If a vector of length 2 (or list components
have length 1), the two values will be interpreted as relative shifts in (rotated) x and y direction,
respectively, and will therefore be recycled as needed (length(repeats) times each).

• reassign (logical(1))
If TRUE, ’small’ tiles (as per min_frac and min_n) are merged with (smallest) adjacent tiles.
If FALSE, small tiles are ’eliminated’, i.e., set to NA.

• min_frac (numeric(1))
Value must be >=0, <1. Minimum relative size of partition as percentage of sample.

• min_n (integer(1))
Minimum number of samples per partition.

mlr_resamplings_repeated_spcv_tiles 47

• iterate (integer(1))
Passed down to sperrorest::tile_neighbors().

• repeats (integer(1))
Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSpCVTiles

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingRepeatedSpCVTiles$new()

• ResamplingRepeatedSpCVTiles$folds()

• ResamplingRepeatedSpCVTiles$repeats()

• ResamplingRepeatedSpCVTiles$instantiate()

• ResamplingRepeatedSpCVTiles$clone()

Method new(): Create a "Spatial ’Tiles’ resampling" resampling instance.
For a list of available arguments, please see sperrorest::partition_tiles.

Usage:
ResamplingRepeatedSpCVTiles$new(id = "repeated_spcv_tiles")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:
ResamplingRepeatedSpCVTiles$folds(iters)

Arguments:

iters integer()
Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:
ResamplingRepeatedSpCVTiles$repeats(iters)

Arguments:

iters integer()
Iteration number.

48 mlr_resamplings_repeated_spcv_tiles

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingRepeatedSpCVTiles$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingRepeatedSpCVTiles$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules
in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote
Sensing Symposium. doi:10.1109/igarss.2012.6352393.

See Also

ResamplingSpCVBlock

Examples

if (mlr3misc::require_namespaces("sperrorest", quietly = TRUE)) {
library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rrcv = rsmp("repeated_spcv_tiles",
repeats = 2,
nsplit = c(4L, 3L), reassign = FALSE)

rrcv$instantiate(task)

Individual sets:
rrcv$iters
rrcv$folds(10:12)
rrcv$repeats(10:12)

Individual sets:
rrcv$train_set(1)
rrcv$test_set(1)
intersect(rrcv$train_set(1), rrcv$test_set(1))

Internal storage:
rrcv$instance # table

}

https://doi.org/10.1109/igarss.2012.6352393

mlr_resamplings_repeated_sptcv_cstf 49

mlr_resamplings_repeated_sptcv_cstf

(CAST) Repeated spatiotemporal "leave-location-and-time-out" re-
sampling

Description

Splits data using Leave-Location-Out (LLO), Leave-Time-Out (LTO) and Leave-Location-and-
Time-Out (LLTO) partitioning. See the upstream implementation at CreateSpacetimeFolds()
(package CAST) and Meyer et al. (2018) for further information.

Details

LLO predicts on unknown locations i.e. complete locations are left out in the training sets. The
"space" role in Task$col_roles identifies spatial units. If stratify is TRUE, the target distribu-
tion is similar in each fold. This is useful for land cover classification when the observations are
polygons. In this case, LLO with stratification should be used to hold back complete polygons and
have a similar target distribution in each fold. LTO leaves out complete temporal units which are
identified by the "time" role in Task$col_roles. LLTO leaves out spatial and temporal units. See
the examples.

Parameters

• folds (integer(1))
Number of folds.

• stratify
If TRUE, stratify on the target column.

• repeats (integer(1))
Number of repeats.

Super class

mlr3::Resampling -> ResamplingRepeatedSptCVCstf

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingRepeatedSptCVCstf$new()

• ResamplingRepeatedSptCVCstf$folds()

• ResamplingRepeatedSptCVCstf$repeats()

• ResamplingRepeatedSptCVCstf$instantiate()

https://CRAN.R-project.org/package=CAST

50 mlr_resamplings_repeated_sptcv_cstf

• ResamplingRepeatedSptCVCstf$clone()

Method new(): Create a "Spacetime Folds" resampling instance.

Usage:
ResamplingRepeatedSptCVCstf$new(id = "repeated_sptcv_cstf")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method folds(): Translates iteration numbers to fold number.

Usage:
ResamplingRepeatedSptCVCstf$folds(iters)

Arguments:

iters integer()
Iteration number.

Method repeats(): Translates iteration numbers to repetition number.

Usage:
ResamplingRepeatedSptCVCstf$repeats(iters)

Arguments:

iters integer()
Iteration number.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingRepeatedSptCVCstf$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingRepeatedSptCVCstf$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Zhao Y, Karypis G (2002). “Evaluation of Hierarchical Clustering Algorithms for Document
Datasets.” 11th Conference of Information and Knowledge Management (CIKM), 51-524. doi:10.1145/
584792.584877.

https://doi.org/10.1145/584792.584877
https://doi.org/10.1145/584792.584877

mlr_resamplings_spcv_block 51

Examples

library(mlr3)
task = tsk("cookfarm_mlr3")
task$set_col_roles("SOURCEID", roles = "space")
task$set_col_roles("Date", roles = "time")

Instantiate Resampling
rcv = rsmp("repeated_sptcv_cstf", folds = 5, repeats = 2)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

Internal storage:
rcv$instance # table

mlr_resamplings_spcv_block

(blockCV) Spatial block resampling

Description

This function creates spatially separated folds based on a distance to number of row and/or column.
It assigns blocks to the training and testing folds randomly, systematically or in a checkerboard
pattern. The distance (size) should be in metres, regardless of the unit of the reference system
of the input data (for more information see the details section). By default, the function creates
blocks according to the extent and shape of the spatial sample data (x e.g. the species occurrence),
Alternatively, blocks can be created based on r assuming that the user has considered the landscape
for the given species and case study. Blocks can also be offset so the origin is not at the outer corner
of the rasters. Instead of providing a distance, the blocks can also be created by specifying a number
of rows and/or columns and divide the study area into vertical or horizontal bins, as presented in
Wenger & Olden (2012) and Bahn & McGill (2012). Finally, the blocks can be specified by a
user-defined spatial polygon layer.

Details

To maintain consistency, all functions in this package use meters as their unit of measurement.
However, when the input map has a geographic coordinate system (in decimal degrees), the block
size is calculated by dividing the size parameter by deg_to_metre (which defaults to 111325 me-
ters, the standard distance of one degree of latitude on the Equator). In reality, this value varies by a
factor of the cosine of the latitude. So, an alternative sensible value could be cos(mean(sf::st_bbox(x)[c(2,4)])
* pi/180) * 111325.

The offset can be used to change the spatial position of the blocks. It can also be used to assess the
sensitivity of analysis results to shifting in the blocking arrangements. These options are available

52 mlr_resamplings_spcv_block

when size is defined. By default the region is located in the middle of the blocks and by setting the
offsets, the blocks will shift.

Roberts et. al. (2017) suggest that blocks should be substantially bigger than the range of spatial
autocorrelation (in model residual) to obtain realistic error estimates, while a buffer with the size
of the spatial autocorrelation range would result in a good estimation of error. This is because of
the so-called edge effect (O’Sullivan & Unwin, 2014), whereby points located on the edges of the
blocks of opposite sets are not separated spatially. Blocking with a buffering strategy overcomes
this issue (see cv_buffer).

mlr3spatiotempcv notes

By default blockCV::cv_spatial() does not allow the creation of multiple repetitions. mlr3spatiotempcv
adds support for this when using the size argument for fold creation. When supplying a vector of
length(repeats) for argument size, these different settings will be used to create folds which
differ among the repetitions.

Multiple repetitions are not possible when using the "row & cols" approach because the created
folds will always be the same.

The ’Description’ and ’Details’ fields are inherited from the respective upstream function.

For a list of available arguments, please see blockCV::cv_spatial.

blockCV >= 3.0.0 changed the argument names of the implementation. For backward compatibility,
mlr3spatiotempcv is still using the old ones. Here’s a list which shows the mapping between
blockCV < 3.0.0 and blockCV >= 3.0.0:

• range -> size

• rasterLayer -> r

• speciesData -> points

• showBlocks -> plot

• cols and rows -> rows_cols

The default of argument hexagon is different in mlr3spatiotempcv (FALSE instead of TRUE) to
create square blocks instead of hexagonal blocks by default.

Super class

mlr3::Resampling -> ResamplingSpCVBlock

Public fields

blocks sf | list of sf objects
Polygons (sf objects) as returned by blockCV which grouped observations into partitions.

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

mlr_resamplings_spcv_block 53

Methods

Public methods:
• ResamplingSpCVBlock$new()

• ResamplingSpCVBlock$instantiate()

• ResamplingSpCVBlock$clone()

Method new(): Create an "spatial block" resampling instance.
For a list of available arguments, please see blockCV::cv_spatial().

Usage:
ResamplingSpCVBlock$new(id = "spcv_block")

Arguments:
id character(1)

Identifier for the resampling strategy.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingSpCVBlock$instantiate(task)

Arguments:
task mlr3::Task

A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingSpCVBlock$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for gener-
ating spatially or environmentally separated folds for k-fold cross-validation of species distribution
models.” bioRxiv. doi:10.1101/357798.

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rcv = rsmp("spcv_block", range = 3000L, folds = 3)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)

https://doi.org/10.1101/357798

54 mlr_resamplings_spcv_buffer

intersect(rcv$train_set(1), rcv$test_set(1))

Internal storage:
rcv$instance

}

mlr_resamplings_spcv_buffer

(blockCV) Spatial buffering resampling

Description

This function generates spatially separated train and test folds by considering buffers of the specified
distance (size parameter) around each observation point. This approach is a form of leave-one-out
cross-validation. Each fold is generated by excluding nearby observations around each testing point
within the specified distance (ideally the range of spatial autocorrelation, see cv_spatial_autocor).
In this method, the testing set never directly abuts a training sample (e.g. presence or absence; 0s
and 1s). For more information see the details section.

Details

When working with presence-background (presence and pseudo-absence) species distribution data
(should be specified by presence_bg = TRUE argument), only presence records are used for speci-
fying the folds (recommended). Consider a target presence point. The buffer is defined around this
target point, using the specified range (size). By default, the testing fold comprises only the target
presence point (all background points within the buffer are also added when add_bg = TRUE). Any
non-target presence points inside the buffer are excluded. All points (presence and background)
outside of buffer are used for the training set. The methods cycles through all the presence data, so
the number of folds is equal to the number of presence points in the dataset.

For presence-absence data (and all other types of data), folds are created based on all records, both
presences and absences. As above, a target observation (presence or absence) forms a test point, all
presence and absence points other than the target point within the buffer are ignored, and the training
set comprises all presences and absences outside the buffer. Apart from the folds, the number
of training-presence, training-absence, testing-presence and testing-absence records is stored and
returned in the records table. If column = NULL and presence_bg = FALSE, the procedure is like
presence-absence data. All other data types (continuous, count or multi-class responses) should be
done by presence_bg = FALSE.

mlr3spatiotempcv notes

The ’Description’ and ’Details’ fields are inherited from the respective upstream function. For a list
of available arguments, please see blockCV::cv_buffer.

blockCV >= 3.0.0 changed the argument names of the implementation. For backward compatibility,
mlr3spatiotempcv is still using the old ones. Here’s a list which shows the mapping between
blockCV < 3.0.0 and blockCV >= 3.0.0:

mlr_resamplings_spcv_buffer 55

• theRange -> size

• addBG -> add_bg

• spDataType (character vector) -> presence_bg (boolean)

Super class

mlr3::Resampling -> ResamplingSpCVBuffer

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingSpCVBuffer$new()

• ResamplingSpCVBuffer$instantiate()

• ResamplingSpCVBuffer$clone()

Method new(): Create an "Environmental Block" resampling instance.
For a list of available arguments, please see blockCV::cv_buffer().

Usage:
ResamplingSpCVBuffer$new(id = "spcv_buffer")

Arguments:
id character(1)

Identifier for the resampling strategy.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingSpCVBuffer$instantiate(task)

Arguments:
task mlr3::Task

A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingSpCVBuffer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for gener-
ating spatially or environmentally separated folds for k-fold cross-validation of species distribution
models.” bioRxiv. doi:10.1101/357798.

https://doi.org/10.1101/357798

56 mlr_resamplings_spcv_coords

See Also

ResamplingSpCVDisc

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rcv = rsmp("spcv_buffer", theRange = 10000)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
intersect(rcv$train_set(1), rcv$test_set(1))

Internal storage:
rcv$instance

}

mlr_resamplings_spcv_coords

(sperrorest) Coordinate-based k-means clustering

Description

Splits data by clustering in the coordinate space. See the upstream implementation at sperrorest::partition_kmeans()
and Brenning (2012) for further information.

Details

Universal partitioning method that splits the data in the coordinate space. Useful for spatially homo-
geneous datasets that cannot be split well with rectangular approaches like ResamplingSpCVBlock.

Parameters

• folds (integer(1))
Number of folds.

Super class

mlr3::Resampling -> ResamplingSpCVCoords

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

mlr_resamplings_spcv_coords 57

Methods

Public methods:
• ResamplingSpCVCoords$new()

• ResamplingSpCVCoords$instantiate()

• ResamplingSpCVCoords$clone()

Method new(): Create an "coordinate-based" repeated resampling instance.
For a list of available arguments, please see sperrorest::partition_cv.

Usage:
ResamplingSpCVCoords$new(id = "spcv_coords")

Arguments:
id character(1)

Identifier for the resampling strategy.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingSpCVCoords$instantiate(task)

Arguments:
task mlr3::Task

A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingSpCVCoords$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules
in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote
Sensing Symposium. doi:10.1109/igarss.2012.6352393.

Examples

library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rcv = rsmp("spcv_coords", folds = 5)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
check that no obs are in both sets

https://doi.org/10.1109/igarss.2012.6352393

58 mlr_resamplings_spcv_disc

intersect(rcv$train_set(1), rcv$test_set(1)) # good!

Internal storage:
rcv$instance # table

mlr_resamplings_spcv_disc

(sperrorest) Spatial "disc" resampling

Description

Spatial partitioning using circular test areas of one of more observations. Optionally, a buffer
around the test area can be used to exclude observations. See the upstream implementation at
sperrorest::partition_disc() and Brenning (2012) for further information.

Parameters

• folds (integer(1))
Number of folds.

• radius (numeric(1))
Radius of test area disc.

• buffer (integer(1))
Radius around test area disc which is excluded from training or test set.

• prob (integer(1))
Optional argument passed down to sample().

• replace (logical(1))
Optional argument passed down to sample(). Sample with or without replacement.

Super class

mlr3::Resampling -> ResamplingSpCVDisc

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingSpCVDisc$new()

• ResamplingSpCVDisc$instantiate()

• ResamplingSpCVDisc$clone()

Method new(): Create a "Spatial ’Disc’ resampling" resampling instance.
For a list of available arguments, please see sperrorest::partition_disc.

mlr_resamplings_spcv_disc 59

Usage:

ResamplingSpCVDisc$new(id = "spcv_disc")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:

ResamplingSpCVDisc$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResamplingSpCVDisc$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules
in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote
Sensing Symposium. doi:10.1109/igarss.2012.6352393.

Examples

library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rcv = rsmp("spcv_disc", folds = 3L, radius = 200L, buffer = 200L)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

Internal storage:
rcv$instance # table

https://doi.org/10.1109/igarss.2012.6352393

60 mlr_resamplings_spcv_env

mlr_resamplings_spcv_env

(blockCV) "Environmental blocking" resampling

Description

Splits data by clustering in the feature space. See the upstream implementation at blockCV::cv_cluster()
and Valavi et al. (2018) for further information.

Details

Useful when the dataset is supposed to be split on environmental information which is present in
features. The method allows for a combination of multiple features for clustering.

The input of raster images directly as in blockCV::cv_cluster() is not supported. See mlr3spatial
and its raster DataBackends for such support in mlr3.

Parameters

• folds (integer(1))
Number of folds.

• features (character())
The features to use for clustering.

Super class

mlr3::Resampling -> ResamplingSpCVEnv

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingSpCVEnv$new()

• ResamplingSpCVEnv$instantiate()

• ResamplingSpCVEnv$clone()

Method new(): Create an "Environmental Block" resampling instance.
For a list of available arguments, please see blockCV::cv_cluster.

Usage:
ResamplingSpCVEnv$new(id = "spcv_env")

Arguments:
id character(1)

Identifier for the resampling strategy.

https://CRAN.R-project.org/package=mlr3spatial
https://CRAN.R-project.org/package=mlr3

mlr_resamplings_spcv_knndm 61

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingSpCVEnv$instantiate(task)

Arguments:
task mlr3::Task

A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingSpCVEnv$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2018). “blockCV: an R package for gener-
ating spatially or environmentally separated folds for k-fold cross-validation of species distribution
models.” bioRxiv. doi:10.1101/357798.

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rcv = rsmp("spcv_env", folds = 4)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
intersect(rcv$train_set(1), rcv$test_set(1))

Internal storage:
rcv$instance

}

mlr_resamplings_spcv_knndm

(CAST) K-fold Nearest Neighbour Distance Matching

Description

This function implements the kNNDM algorithm and returns the necessary indices to perform a
k-fold NNDM CV for map validation.

https://doi.org/10.1101/357798

62 mlr_resamplings_spcv_knndm

Details

knndm is a k-fold version of NNDM LOO CV for medium and large datasets. Brielfy, the algorithm
tries to find a k-fold configuration such that the integral of the absolute differences (Wasserstein W
statistic) between the empirical nearest neighbour distance distribution function between the test and
training data during CV (Gj*), and the empirical nearest neighbour distance distribution function
between the prediction and training points (Gij), is minimised. It does so by performing clustering
of the training points’ coordinates for different numbers of clusters that range from k to N (number
of observations), merging them into k final folds, and selecting the configuration with the lowest W.

Using a projected CRS in ‘knndm‘ has large computational advantages since fast nearest neighbour
search can be done via the ‘FNN‘ package, while working with geographic coordinates requires
computing the full spherical distance matrices. As a clustering algorithm, ‘kmeans‘ can only be used
for projected CRS while ‘hierarchical‘ can work with both projected and geographical coordinates,
though it requires calculating the full distance matrix of the training points even for a projected
CRS.

In order to select between clustering algorithms and number of folds ‘k‘, different ‘knndm‘ config-
urations can be run and compared, being the one with a lower W statistic the one that offers a better
match. W statistics between ‘knndm‘ runs are comparable as long as ‘tpoints‘ and ‘predpoints‘ or
‘modeldomain‘ stay the same.

Map validation using ‘knndm‘ should be used using ‘CAST::global_validation‘, i.e. by stacking
all out-of-sample predictions and evaluating them all at once. The reasons behind this are 1) The
resulting folds can be unbalanced and 2) nearest neighbour functions are constructed and matched
using all CV folds simultaneously.

If training data points are very clustered with respect to the prediction area and the presented ‘kn-
ndm‘ configuration still show signs of Gj* > Gij, there are several things that can be tried. First,
increase the ‘maxp‘ parameter; this may help to control for strong clustering (at the cost of having
unbalanced folds). Secondly, decrease the number of final folds ‘k‘, which may help to have larger
clusters.

The ‘modeldomain‘ is either a sf polygon that defines the prediction area, or alternatively a Spa-
tRaster out of which a polygon, transformed into the CRS of the training points, is defined as the
outline of all non-NA cells. Then, the function takes a regular point sample (amount defined by
‘samplesize‘) from the spatial extent. As an alternative use ‘predpoints‘ instead of ‘modeldomain‘,
if you have already defined the prediction locations (e.g. raster pixel centroids). When using either
‘modeldomain‘ or ‘predpoints‘, we advise to plot the study area polygon and the training/prediction
points as a previous step to ensure they are aligned.

‘knndm‘ can also be performed in the feature space by setting ‘space‘ to "feature". Euclidean
distances or Mahalanobis distances can be used for distance calculation, but only Euclidean are
tested. In this case, nearest neighbour distances are calculated in n-dimensional feature space rather
than in geographical space. ‘tpoints‘ and ‘predpoints‘ can be data frames or sf objects containing
the values of the features. Note that the names of ‘tpoints‘ and ‘predpoints‘ must be the same.
‘predpoints‘ can also be missing, if ‘modeldomain‘ is of class SpatRaster. In this case, the values of
of the SpatRaster will be extracted to the ‘predpoints‘. In the case of any categorical features, Gower
distances will be used to calculate the Nearest Neighbour distances [Experimental]. If categorical
features are present, and ‘clustering‘ = "kmeans", K-Prototype clustering will be performed instead.

Parameters

• folds (integer(1))

mlr_resamplings_spcv_knndm 63

Number of folds.

• stratify
If TRUE, stratify on the target column.

Super class

mlr3::Resampling -> ResamplingSpCVKnndm

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingSpCVKnndm$new()

• ResamplingSpCVKnndm$instantiate()

• ResamplingSpCVKnndm$clone()

Method new(): Create a "K-fold Nearest Neighbour Distance Matching" resampling instance.

Usage:
ResamplingSpCVKnndm$new(id = "spcv_knndm")

Arguments:

id character(1)
Identifier for the resampling strategy.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingSpCVKnndm$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingSpCVKnndm$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Linnenbrink, J., Mila, C., Ludwig, M., Meyer, H. (2023). “kNNDM: k-fold Nearest Neighbour Dis-
tance Matching Cross-Validation for map accuracy estimation.” EGUsphere, 2023, 1–16. doi:10.5194/
egusphere20231308, https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1308/.

https://doi.org/10.5194/egusphere-2023-1308
https://doi.org/10.5194/egusphere-2023-1308
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1308/

64 mlr_resamplings_spcv_tiles

Examples

if (mlr3misc::require_namespaces(c("sf", "CAST"), quietly = TRUE)) {
library(mlr3)
library(sf)

set.seed(42)
task = tsk("ecuador")
points = sf::st_as_sf(task$coordinates(), crs = task$crs, coords = c("x", "y"))
modeldomain = sf::st_as_sfc(sf::st_bbox(points))

set.seed(42)
cv_knndm = rsmp("spcv_knndm", modeldomain = modeldomain)
cv_knndm$instantiate(task)

#' ### Individual sets:
cv_knndm$train_set(1)
cv_knndm$test_set(1)
check that no obs are in both sets
intersect(cv_knndm$train_set(1), cv_knndm$test_set(1)) # good!

Internal storage:
cv_knndm$instance # table

}

mlr_resamplings_spcv_tiles

(sperrorest) Spatial "Tiles" resampling

Description

Spatial partitioning using rectangular tiles. Small partitions can optionally be merged into adjacent
ones to avoid partitions with too few observations. This method is similar to ResamplingSpCVBlock
by making use of rectangular zones in the coordinate space. See the upstream implementation at
sperrorest::partition_disc() and Brenning (2012) for further information.

Parameters

• dsplit (integer(2))
Equidistance of splits in (possibly rotated) x direction (dsplit[1]) and y direction (dsplit[2])
used to define tiles. If dsplit is of length 1, its value is recycled. Either dsplit or nsplit must
be specified.

• nsplit (integer(2))
Number of splits in (possibly rotated) x direction (nsplit[1]) and y direction (nsplit[2])
used to define tiles. If nsplit is of length 1, its value is recycled.

• rotation (character(1))
Whether and how the rectangular grid should be rotated; random rotation is only possible
between -45 and +45 degrees. Accepted values: One of c("none", "random", "user").

mlr_resamplings_spcv_tiles 65

• user_rotation (character(1))
Only used when rotation = "user". Angle(s) (in degrees) by which the rectangular grid is
to be rotated in each repetition. Either a vector of same length as repeats, or a single number
that will be replicated length(repeats) times.

• offset (logical(1))
Whether and how the rectangular grid should be shifted by an offset. Accepted values: One
of c("none", "random", "user").

• user_offset (logical(1))
Only used when offset = "user". A list (or vector) of two components specifying a shift
of the rectangular grid in (possibly rotated) x and y direction. The offset values are relative
values, a value of 0.5 resulting in a one-half tile shift towards the left, or upward. If this is
a list, its first (second) component refers to the rotated x (y) direction, and both components
must have same length as repeats (or length 1). If a vector of length 2 (or list components
have length 1), the two values will be interpreted as relative shifts in (rotated) x and y direction,
respectively, and will therefore be recycled as needed (length(repeats) times each).

• reassign (logical(1))
If TRUE, ’small’ tiles (as per min_frac and min_n) are merged with (smallest) adjacent tiles.
If FALSE, small tiles are ’eliminated’, i.e., set to NA.

• min_frac (numeric(1))
Value must be >=0, <1. Minimum relative size of partition as percentage of sample.

• min_n (integer(1))
Minimum number of samples per partition.

• iterate (integer(1))
Passed down to sperrorest::tile_neighbors().

Super class

mlr3::Resampling -> ResamplingSpCVTiles

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:

• ResamplingSpCVTiles$new()

• ResamplingSpCVTiles$instantiate()

• ResamplingSpCVTiles$clone()

Method new(): Create a "Spatial ’Tiles’ resampling" resampling instance.

Usage:
ResamplingSpCVTiles$new(id = "spcv_tiles")

Arguments:

66 mlr_resamplings_spcv_tiles

id character(1)
Identifier for the resampling strategy. For a list of available arguments, please see sperror-
est::partition_tiles.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:
ResamplingSpCVTiles$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResamplingSpCVTiles$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Brenning A (2012). “Spatial cross-validation and bootstrap for the assessment of prediction rules
in remote sensing: The R package sperrorest.” In 2012 IEEE International Geoscience and Remote
Sensing Symposium. doi:10.1109/igarss.2012.6352393.

See Also

ResamplingSpCVBlock

Examples

if (mlr3misc::require_namespaces("sperrorest", quietly = TRUE)) {
library(mlr3)
task = tsk("ecuador")

Instantiate Resampling
rcv = rsmp("spcv_tiles", nsplit = c(4L, 3L), reassign = FALSE)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

Internal storage:
rcv$instance # table

}

https://doi.org/10.1109/igarss.2012.6352393

mlr_resamplings_sptcv_cstf 67

mlr_resamplings_sptcv_cstf

(CAST) Spatiotemporal "Leave-location-and-time-out" resampling

Description

Splits data using Leave-Location-Out (LLO), Leave-Time-Out (LTO) and Leave-Location-and-
Time-Out (LLTO) partitioning. See the upstream implementation at CreateSpacetimeFolds()
(package CAST) and Meyer et al. (2018) for further information.

Details

LLO predicts on unknown locations i.e. complete locations are left out in the training sets. The
"space" role in Task$col_roles identifies spatial units. If stratify is TRUE, the target distribu-
tion is similar in each fold. This is useful for land cover classification when the observations are
polygons. In this case, LLO with stratification should be used to hold back complete polygons and
have a similar target distribution in each fold. LTO leaves out complete temporal units which are
identified by the "time" role in Task$col_roles. LLTO leaves out spatial and temporal units. See
the examples.

Parameters

• folds (integer(1))
Number of folds.

• stratify
If TRUE, stratify on the target column.

Super class

mlr3::Resampling -> ResamplingSptCVCstf

Active bindings

iters integer(1)
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Public methods:
• ResamplingSptCVCstf$new()

• ResamplingSptCVCstf$instantiate()

• ResamplingSptCVCstf$clone()

Method new(): Create a "Spacetime Folds" resampling instance.

Usage:
ResamplingSptCVCstf$new(id = "sptcv_cstf")

https://CRAN.R-project.org/package=CAST

68 mlr_resamplings_sptcv_cstf

Arguments:

id character(1)
Identifier for the resampling strategy.

Method instantiate(): Materializes fixed training and test splits for a given task.

Usage:

ResamplingSptCVCstf$instantiate(task)

Arguments:

task mlr3::Task
A task to instantiate.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ResamplingSptCVCstf$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T (2018). “Improving performance of spatio-
temporal machine learning models using forward feature selection and target-oriented validation.”
Environmental Modelling & Software, 101, 1–9. doi:10.1016/j.envsoft.2017.12.001.

Examples

library(mlr3)
task = tsk("cookfarm_mlr3")
task$set_col_roles("SOURCEID", roles = "space")
task$set_col_roles("Date", roles = "time")

Instantiate Resampling
rcv = rsmp("sptcv_cstf", folds = 5)
rcv$instantiate(task)

Individual sets:
rcv$train_set(1)
rcv$test_set(1)
check that no obs are in both sets
intersect(rcv$train_set(1), rcv$test_set(1)) # good!

Internal storage:
rcv$instance # table

https://doi.org/10.1016/j.envsoft.2017.12.001

mlr_tasks_cookfarm_mlr3 69

mlr_tasks_cookfarm_mlr3

Cookfarm Profiles Regression Task

Description

The R.J. Cook Agronomy Farm (cookfarm) is a Long-Term Agroecosystem Research Site operated
by Washington State University, located near Pullman, Washington, USA. Contains spatio-temporal
(3D+T) measurements of three soil properties and a number of spatial and temporal regression
covariates.

Here, only the "Profiles" dataset is used from the collection. The Date column was appended from
the readings dataset. In addition coordinates were appended to the task as variables "x" and "y".

The dataset was borrowed and adapted from package GSIF which was on archived on CRAN in
2021-03.

Usage

data(cookfarm_mlr3)

Format

R6::R6Class inheriting from mlr3::TaskRegr.

Usage

mlr_tasks$get("cookfarm")
tsk("cookfarm_mlr3")

Column roles

The task has set column roles "space" and "time" for variables "Date" and "SOURCEID", respec-
tively. These are used by certain methods during partitioning, e.g., mlr_resamplings_sptcv_cstf
with variant "Leave-location-and-time-out". If only one of space or time should left out, the column
roles must be adjusted by the user!

References

Gasch, C.K., Hengl, T., Gräler, B., Meyer, H., Magney, T., Brown, D.J., 2015. Spatio-temporal
interpolation of soil water, temperature, and electrical conductivity in 3D+T: the Cook Agronomy
Farm data set. Spatial Statistics, 14, pp.70–90.

Gasch, C.K., D.J. Brown, E.S. Brooks, M. Yourek, M. Poggio, D.R. Cobos, C.S. Campbell, 2016?
Retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Submitted
to Vadose Zone Journal.

Gasch, C.K., D.J. Brown, C.S. Campbell, D.R. Cobos, E.S. Brooks, M. Chahal, M. Poggio, 2016?
A field-scale sensor network data set for monitoring and modeling the spatial and temporal variation
of soil moisture in a dryland agricultural field. Submitted to Water Resources Research.

70 mlr_tasks_diplodia

See Also

Dictionary of Tasks: mlr3::mlr_tasks

as.data.table(mlr_tasks) for a complete table of all (also dynamically created) Tasks.

Other Task: TaskClassifST, TaskRegrST, mlr_tasks_diplodia, mlr_tasks_ecuador

mlr_tasks_diplodia Diplodia Classification Task

Description

Data set created by Patrick Schratz, University of Jena (Germany) and Eugenia Iturritxa, NEIKER,
Vitoria-Gasteiz (Spain). This dataset should be cited as Schratz et al. (2019) (see reference below).
The publication also contains additional information on data collection. The data set provided
here shows infections of trees by the pathogen Diplodia Sapinea in the Basque Country in Spain.
Predictors are environmental variables like temperature, precipitation, soil and more.

Usage

data(diplodia)

Format

R6::R6Class inheriting from mlr3::TaskClassif.

Usage

mlr_tasks$get("diplodia")
tsk("diplodia")

References

Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A (2019). “Hyperparameter tuning and per-
formance assessment of statistical and machine-learning algorithms using spatial data.” Ecological
Modelling, 406, 109–120. doi:10.1016/j.ecolmodel.2019.06.002.

See Also

Dictionary of Tasks: mlr3::mlr_tasks

as.data.table(mlr_tasks) for a complete table of all (also dynamically created) Tasks.

Other Task: TaskClassifST, TaskRegrST, mlr_tasks_cookfarm_mlr3, mlr_tasks_ecuador

https://doi.org/10.1016/j.ecolmodel.2019.06.002

mlr_tasks_ecuador 71

mlr_tasks_ecuador Ecuador Classification Task

Description

Data set created by Jannes Muenchow, University of Erlangen-Nuernberg, Germany. This dataset
should be cited as Muenchow et al. (2012) (see reference below). The publication also contains
additional information on data collection and the geomorphology of the area. The data set provided
here is (a subset of) the one from the ’natural’ part of the RBSF area and corresponds to landslide
distribution in the year 2000.

Usage

data(ecuador)

Format

R6::R6Class inheriting from mlr3::TaskClassif.

Usage

mlr_tasks$get("ecuador")
tsk("ecuador")

References

Muenchow, J., Brenning, A., Richter, M., 2012. Geomorphic process rates of landslides along a
humidity gradient in the tropical Andes. Geomorphology, 139-140: 271-284.

See Also

Dictionary of Tasks: mlr3::mlr_tasks

as.data.table(mlr_tasks) for a complete table of all (also dynamically created) Tasks.

Other Task: TaskClassifST, TaskRegrST, mlr_tasks_cookfarm_mlr3, mlr_tasks_diplodia

TaskClassifST Create a Spatiotemporal Classification Task

Description

This task specializes mlr3::Task and mlr3::TaskSupervised for spatiotemporal classification prob-
lems. The target column is assumed to be a factor. The task_type is set to "classif" and
"spatiotemporal".

A spatial example task is available via tsk("ecuador"), a spatiotemporal one via tsk("cookfarm_mlr3").

The coordinate reference system passed during initialization must match the one which was used
during data creation, otherwise offsets of multiple meters may occur. By default, coordinates are
not used as features. This can be changed by setting coords_as_features = TRUE.

72 TaskClassifST

Super classes

mlr3::Task -> mlr3::TaskSupervised -> mlr3::TaskClassif -> TaskClassifST

Active bindings

crs (character(1))
Returns coordinate reference system of task.

coordinate_names (character())
Coordinate names.

coords_as_features (logical(1))
If TRUE, coordinates are used as features. This is a shortcut for task$set_col_roles(c("x",
"y"), role = "feature") with the assumption that the coordinates in the data are named "x"
and "y".

Methods

Public methods:
• TaskClassifST$new()

• TaskClassifST$coordinates()

• TaskClassifST$print()

• TaskClassifST$clone()

Method new(): Create a new spatiotemporal resampling Task
Usage:
TaskClassifST$new(
id,
backend,
target,
positive = NULL,
label = NA_character_,
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
extra_args = list()

)

Arguments:
id (character(1))

Identifier for the new instance.
backend (mlr3::DataBackend)

Either a mlr3::DataBackend, or any object which is convertible to a mlr3::DataBackend with
as_data_backend(). E.g., am sf will be converted to a mlr3::DataBackendDataTable.

target (character(1))
Name of the target column.

positive (character(1))
Only for binary classification: Name of the positive class. The levels of the target columns
are reordered accordingly, so that the first element of $class_names is the positive class,
and the second element is the negative class.

TaskClassifST 73

label (character(1))
Label for the new instance. Shown in as.data.table(mlr_tasks).

coordinate_names (character(1))
The column names of the coordinates in the data.

crs (character(1))
Coordinate reference system. WKT2 or EPSG string.

coords_as_features (logical(1))
If TRUE, coordinates are used as features. This is a shortcut for task$set_col_roles(c("x",
"y"), role = "feature") with the assumption that the coordinates in the data are named
"x" and "y".

extra_args (named list())
Named list of constructor arguments, required for converting task types via mlr3::convert_task().

Method coordinates(): Returns coordinates of observations.

Usage:
TaskClassifST$coordinates(row_ids = NULL)

Arguments:
row_ids (integer())

Vector of rows indices as subset of task$row_ids.

Returns: data.table::data.table()

Method print(): Print the task.

Usage:
TaskClassifST$print(...)

Arguments:
... Arguments passed to the $print() method of the superclass.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskClassifST$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Other Task: TaskRegrST, mlr_tasks_cookfarm_mlr3, mlr_tasks_diplodia, mlr_tasks_ecuador

Examples

if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
task = as_task_classif_st(ecuador,
target = "slides",
positive = "TRUE", coordinate_names = c("x", "y")

)

passing objects of class 'sf' is also supported

74 TaskRegrST

data_sf = sf::st_as_sf(ecuador, coords = c("x", "y"))
task = as_task_classif_st(data_sf, target = "slides", positive = "TRUE")

task$task_type
task$formula()
task$class_names
task$positive
task$negative
task$coordinates()
task$coordinate_names

}

TaskRegrST Create a Spatiotemporal Regression Task

Description

This task specializes mlr3::Task and mlr3::TaskSupervised for spatiotemporal classification prob-
lems.

A spatial example task is available via tsk("ecuador"), a spatiotemporal one via tsk("cookfarm_mlr3").

The coordinate reference system passed during initialization must match the one which was used
during data creation, otherwise offsets of multiple meters may occur. By default, coordinates are
not used as features. This can be changed by setting coords_as_features = TRUE.

Super classes

mlr3::Task -> mlr3::TaskSupervised -> mlr3::TaskRegr -> TaskRegrST

Active bindings

crs (character(1))
Returns coordinate reference system of task.

coordinate_names (character())
Coordinate names.

coords_as_features (logical(1))
If TRUE, coordinates are used as features. This is a shortcut for task$set_col_roles(c("x",
"y"), role = "feature") with the assumption that the coordinates in the data are named "x"
and "y".

Methods

Public methods:
• TaskRegrST$new()

• TaskRegrST$coordinates()

• TaskRegrST$print()

TaskRegrST 75

• TaskRegrST$clone()

Method new(): Create a new spatiotemporal resampling Task Returns coordinates of observa-
tions.

Usage:
TaskRegrST$new(
id,
backend,
target,
label = NA_character_,
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
extra_args = list()

)

Arguments:

id (character(1))
Identifier for the new instance.

backend (mlr3::DataBackend)
Either a mlr3::DataBackend, or any object which is convertible to a mlr3::DataBackend with
as_data_backend(). E.g., am sf will be converted to a mlr3::DataBackendDataTable.

target (character(1))
Name of the target column.

label (character(1))
Label for the new instance. Shown in as.data.table(mlr_tasks).

coordinate_names (character(1))
The column names of the coordinates in the data.

crs (character(1))
Coordinate reference system. WKT2 or EPSG string.

coords_as_features (logical(1))
If TRUE, coordinates are used as features. This is a shortcut for task$set_col_roles(c("x",
"y"), role = "feature") with the assumption that the coordinates in the data are named
"x" and "y".

extra_args (named list())
Named list of constructor arguments, required for converting task types via mlr3::convert_task().

Method coordinates():

Usage:
TaskRegrST$coordinates(row_ids = NULL)

Arguments:

row_ids (integer())
Vector of rows indices as subset of task$row_ids.

Returns: data.table::data.table()

Method print(): Print the task.

76 TaskRegrST

Usage:
TaskRegrST$print(...)

Arguments:

... Arguments passed to the $print() method of the superclass.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TaskRegrST$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Other Task: TaskClassifST, mlr_tasks_cookfarm_mlr3, mlr_tasks_diplodia, mlr_tasks_ecuador

Index

∗ Task
mlr_tasks_cookfarm_mlr3, 69
mlr_tasks_diplodia, 70
mlr_tasks_ecuador, 71
TaskClassifST, 71
TaskRegrST, 74

∗ datasets
mlr_tasks_cookfarm_mlr3, 69
mlr_tasks_diplodia, 70
mlr_tasks_ecuador, 71

as_task_classif_st, 5
as_task_regr_st

(as_task_regr_st.TaskClassifST),
7

as_task_regr_st.TaskClassifST, 7
autoplot.ResamplingCustomCV, 10
autoplot.ResamplingCV, 11
autoplot.ResamplingCV(), 11, 15, 17, 19,

22, 24, 26, 29, 32
autoplot.ResamplingRepeatedCV

(autoplot.ResamplingCV), 11
autoplot.ResamplingRepeatedSpCVBlock

(autoplot.ResamplingSpCVBlock),
13

autoplot.ResamplingRepeatedSpCVCoords
(autoplot.ResamplingSpCVCoords),
18

autoplot.ResamplingRepeatedSpCVDisc
(autoplot.ResamplingSpCVDisc),
20

autoplot.ResamplingRepeatedSpCVEnv
(autoplot.ResamplingSpCVEnv),
22

autoplot.ResamplingRepeatedSpCVKnndm
(autoplot.ResamplingSpCVKnndm),
24

autoplot.ResamplingRepeatedSpCVTiles
(autoplot.ResamplingSpCVTiles),
27

autoplot.ResamplingRepeatedSptCVCstf
(autoplot.ResamplingSptCVCstf),
29

autoplot.ResamplingSpCVBlock, 13
autoplot.ResamplingSpCVBlock(), 11, 13,

17, 19, 22, 24, 26, 28, 32
autoplot.ResamplingSpCVBuffer, 16
autoplot.ResamplingSpCVBuffer(), 11, 13,

15, 19, 22, 24, 26, 29, 32
autoplot.ResamplingSpCVCoords, 18
autoplot.ResamplingSpCVCoords(), 11, 13,

15, 17, 22, 24, 26, 29, 32
autoplot.ResamplingSpCVDisc, 20
autoplot.ResamplingSpCVDisc(), 11, 13,

15, 19, 24, 29
autoplot.ResamplingSpCVEnv, 22
autoplot.ResamplingSpCVEnv(), 11, 13, 15,

17, 19, 22, 26, 29, 32
autoplot.ResamplingSpCVKnndm, 24
autoplot.ResamplingSpCVTiles, 27
autoplot.ResamplingSpCVTiles(), 11, 13,

15, 19, 22, 24, 26
autoplot.ResamplingSptCVCstf, 29
autoplot.ResamplingSptCVCstf(), 11, 13,

15, 17, 19, 24

blockCV::cv_buffer, 54
blockCV::cv_buffer(), 55
blockCV::cv_cluster, 41, 60
blockCV::cv_spatial, 33, 34, 52
blockCV::cv_spatial(), 33, 52, 53

cookfarm_mlr3
(mlr_tasks_cookfarm_mlr3), 69

cv_buffer, 33, 52
cv_spatial_autocor, 54

data.frame(), 5, 7
data.table::data.table(), 73, 75
Dictionary, 70, 71

77

78 INDEX

diplodia (mlr_tasks_diplodia), 70

ecuador (mlr_tasks_ecuador), 71

ggplot2::ggplot(), 15
ggsci::scale_color_ucscgb(), 15

mlr3::convert_task(), 5, 7, 73, 75
mlr3::DataBackend, 5, 7, 72, 75
mlr3::DataBackendDataTable, 72, 75
mlr3::mlr_tasks, 70, 71
mlr3::Resampling, 34, 36, 38, 41, 44, 47, 49,

52, 55, 56, 58, 60, 63, 65, 67
mlr3::ResamplingCustomCV, 10, 11
mlr3::ResamplingCV, 12, 13
mlr3::ResamplingRepeatedCV, 12, 13
mlr3::Task, 35, 37, 39, 42, 45, 48, 50, 53, 55,

57, 59, 61, 63, 66, 68, 71, 72, 74
mlr3::TaskClassif, 7, 70–72
mlr3::TaskRegr, 5, 69, 74
mlr3::TaskSupervised, 71, 72, 74
mlr3spatiotempcv

(mlr3spatiotempcv-package), 3
mlr3spatiotempcv-package, 3
mlr_resamplings_repeated_spcv_block,

32
mlr_resamplings_repeated_spcv_coords,

36
mlr_resamplings_repeated_spcv_disc, 38
mlr_resamplings_repeated_spcv_env, 40
mlr_resamplings_repeated_spcv_knndm,

42
mlr_resamplings_repeated_spcv_tiles,

46
mlr_resamplings_repeated_sptcv_cstf,

49
mlr_resamplings_spcv_block, 51
mlr_resamplings_spcv_buffer, 54
mlr_resamplings_spcv_coords, 56
mlr_resamplings_spcv_disc, 58
mlr_resamplings_spcv_env, 60
mlr_resamplings_spcv_knndm, 61
mlr_resamplings_spcv_tiles, 64
mlr_resamplings_sptcv_cstf, 67
mlr_tasks_cookfarm_mlr3, 69, 70, 71, 73,

76
mlr_tasks_diplodia, 70, 70, 71, 73, 76
mlr_tasks_ecuador, 70, 71, 73, 76

plot.ResamplingCustomCV
(autoplot.ResamplingCustomCV),
10

plot.ResamplingCV
(autoplot.ResamplingCV), 11

plot.ResamplingRepeatedCV
(autoplot.ResamplingCV), 11

plot.ResamplingRepeatedSpCVBlock
(autoplot.ResamplingSpCVBlock),
13

plot.ResamplingRepeatedSpCVCoords
(autoplot.ResamplingSpCVCoords),
18

plot.ResamplingRepeatedSpCVDisc
(autoplot.ResamplingSpCVDisc),
20

plot.ResamplingRepeatedSpCVEnv
(autoplot.ResamplingSpCVEnv),
22

plot.ResamplingRepeatedSpCVKnndm
(autoplot.ResamplingSpCVKnndm),
24

plot.ResamplingRepeatedSpCVTiles
(autoplot.ResamplingSpCVTiles),
27

plot.ResamplingRepeatedSptCVCstf
(autoplot.ResamplingSptCVCstf),
29

plot.ResamplingSpCVBlock
(autoplot.ResamplingSpCVBlock),
13

plot.ResamplingSpCVBuffer
(autoplot.ResamplingSpCVBuffer),
16

plot.ResamplingSpCVCoords
(autoplot.ResamplingSpCVCoords),
18

plot.ResamplingSpCVDisc
(autoplot.ResamplingSpCVDisc),
20

plot.ResamplingSpCVEnv
(autoplot.ResamplingSpCVEnv),
22

plot.ResamplingSpCVKnndm
(autoplot.ResamplingSpCVKnndm),
24

plot.ResamplingSpCVTiles
(autoplot.ResamplingSpCVTiles),

INDEX 79

27
plot.ResamplingSptCVCstf

(autoplot.ResamplingSptCVCstf),
29

R6::R6Class, 69–71
ResamplingRepeatedSpCVBlock, 14, 21, 25,

28
ResamplingRepeatedSpCVBlock

(mlr_resamplings_repeated_spcv_block),
32

ResamplingRepeatedSpCVCoords, 19
ResamplingRepeatedSpCVCoords

(mlr_resamplings_repeated_spcv_coords),
36

ResamplingRepeatedSpCVDisc
(mlr_resamplings_repeated_spcv_disc),
38

ResamplingRepeatedSpCVEnv, 23, 24
ResamplingRepeatedSpCVEnv

(mlr_resamplings_repeated_spcv_env),
40

ResamplingRepeatedSpCVKnndm
(mlr_resamplings_repeated_spcv_knndm),
42

ResamplingRepeatedSpCVTiles
(mlr_resamplings_repeated_spcv_tiles),
46

ResamplingRepeatedSptCVCstf, 30, 31
ResamplingRepeatedSptCVCstf

(mlr_resamplings_repeated_sptcv_cstf),
49

ResamplingSpCVBlock, 14, 15, 21, 25, 26, 28
ResamplingSpCVBlock

(mlr_resamplings_spcv_block),
51

ResamplingSpCVBuffer, 15, 17, 21, 26, 28
ResamplingSpCVBuffer

(mlr_resamplings_spcv_buffer),
54

ResamplingSpCVCoords, 15, 19, 21, 26, 28
ResamplingSpCVCoords

(mlr_resamplings_spcv_coords),
56

ResamplingSpCVDisc
(mlr_resamplings_spcv_disc), 58

ResamplingSpCVEnv, 15, 21, 23, 24, 26, 28
ResamplingSpCVEnv

(mlr_resamplings_spcv_env), 60

ResamplingSpCVKnndm
(mlr_resamplings_spcv_knndm),
61

ResamplingSpCVTiles
(mlr_resamplings_spcv_tiles),
64

ResamplingSptCVCstf, 30, 31
ResamplingSptCVCstf

(mlr_resamplings_sptcv_cstf),
67

sf::sf, 5, 7
sperrorest::partition_cv, 36, 57
sperrorest::partition_disc, 38, 58
sperrorest::partition_tiles, 47, 66
sperrorest::tile_neighbors(), 47, 65

TaskClassifST, 5, 6, 70, 71, 71, 76
TaskRegrST, 7, 9, 70, 71, 73, 74
Tasks, 70, 71

	mlr3spatiotempcv-package
	as_task_classif_st
	as_task_regr_st.TaskClassifST
	autoplot.ResamplingCustomCV
	autoplot.ResamplingCV
	autoplot.ResamplingSpCVBlock
	autoplot.ResamplingSpCVBuffer
	autoplot.ResamplingSpCVCoords
	autoplot.ResamplingSpCVDisc
	autoplot.ResamplingSpCVEnv
	autoplot.ResamplingSpCVKnndm
	autoplot.ResamplingSpCVTiles
	autoplot.ResamplingSptCVCstf
	mlr_resamplings_repeated_spcv_block
	mlr_resamplings_repeated_spcv_coords
	mlr_resamplings_repeated_spcv_disc
	mlr_resamplings_repeated_spcv_env
	mlr_resamplings_repeated_spcv_knndm
	mlr_resamplings_repeated_spcv_tiles
	mlr_resamplings_repeated_sptcv_cstf
	mlr_resamplings_spcv_block
	mlr_resamplings_spcv_buffer
	mlr_resamplings_spcv_coords
	mlr_resamplings_spcv_disc
	mlr_resamplings_spcv_env
	mlr_resamplings_spcv_knndm
	mlr_resamplings_spcv_tiles
	mlr_resamplings_sptcv_cstf
	mlr_tasks_cookfarm_mlr3
	mlr_tasks_diplodia
	mlr_tasks_ecuador
	TaskClassifST
	TaskRegrST
	Index

