Package: midas2 1.1.0

Su Liwen

midas2: Bayesian Platform Design with Subgroup Efficacy Exploration(MIDAS-2)

The rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging, which necessitates innovative, integrated, and efficient trial designs(Yuan, Y., et al. (2016) <doi:10.1002/sim.6971>). MIDAS-2 package enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We used a regression model to characterize the efficacy pattern in subgroups. Information borrowing was applied through Bayesian hierarchical model to improve trial efficiency considering the limited sample size in subgroups(Cunanan, K. M., et al. (2019) <doi:10.1177/1740774518812779>). MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion(Wathen, J. K., & Thall, P. F. (2017) <doi:10.1177/1740774517692302>).

Authors:Su Liwen

midas2_1.1.0.tar.gz
midas2_1.1.0.tar.gz(r-4.5-noble)midas2_1.1.0.tar.gz(r-4.4-noble)
midas2_1.1.0.tgz(r-4.4-emscripten)midas2_1.1.0.tgz(r-4.3-emscripten)
midas2.pdf |midas2.html
midas2/json (API)

# Install 'midas2' in R:
install.packages('midas2', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 242 downloads 2 exports 23 dependencies

Last updated 1 years agofrom:ba87c19661. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 24 2024
R-4.5-linuxOKNov 24 2024

Exports:platform_midas2platform_midas2s

Dependencies:abindbootclicodagluelatticelifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackquantregR2jagsR2WinBUGSrjagsrlangSparseMstringistringrsurvivalvctrs