Package: mashr 0.2.79
mashr: Multivariate Adaptive Shrinkage
Implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <doi:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation.
Authors:
mashr_0.2.79.tar.gz
mashr_0.2.79.tar.gz(r-4.5-noble)mashr_0.2.79.tar.gz(r-4.4-noble)
mashr_0.2.79.tgz(r-4.4-emscripten)mashr_0.2.79.tgz(r-4.3-emscripten)
mashr.pdf |mashr.html✨
mashr/json (API)
# Install 'mashr' in R: |
install.packages('mashr', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stephenslab/mashr/issues
Last updated 1 years agofrom:938c074868. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 10 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 10 2024 |
Exports:contrast_matrixcov_canonicalcov_edcov_flashcov_pcacov_udiestimate_null_correlation_simpleextreme_deconvolutionget_estimated_piget_log10bfget_n_significant_conditionsget_pairwise_sharingget_pairwise_sharing_from_samplesget_samplesget_significant_resultsmashmash_1by1mash_compute_loglikmash_compute_posterior_matricesmash_compute_vloglikmash_estimate_corr_emmash_plot_metamash_set_datamash_update_datasim_contrast1sim_contrast2simple_simssimple_sims2
Dependencies:abindashrassertthatetrunctinvgammairlbalatticeMatrixmixsqpmvtnormplyrRcppRcppArmadilloRcppGSLrmetasoftImputeSQUAREMtruncnorm
mashr with common baseline
Rendered fromintro_mashcommonbaseline.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2021-05-23
Started: 2020-06-09
mashr with common baseline at mean
Rendered fromintro_mashbaselinemean.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2021-05-23
Started: 2021-05-23
Introduction to mashr
Rendered fromintro_mash.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2022-12-07
Started: 2020-06-09
Accounting for correlations among measurements
Rendered fromintro_correlations.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2022-12-07
Started: 2020-06-09
Introduction to mash: data-driven covariances
Rendered fromintro_mash_dd.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2020-06-09
Started: 2020-06-09
Simulation with non-canonical matrices
Rendered fromsimulate_noncanon.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2020-06-09
Started: 2020-06-09
Sample from mash posteriors
Rendered frommash_sampling.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2022-01-25
Started: 2020-06-09
eQTL analysis outline
Rendered fromeQTL_outline.Rmd
usingknitr::rmarkdown
on Dec 10 2024.Last update: 2022-12-07
Started: 2020-06-09