Title: | Multivariate Adaptive Shrinkage |
---|---|
Description: | Implements the multivariate adaptive shrinkage (mash) method of Urbut et al (2019) <DOI:10.1038/s41588-018-0268-8> for estimating and testing large numbers of effects in many conditions (or many outcomes). Mash takes an empirical Bayes approach to testing and effect estimation; it estimates patterns of similarity among conditions, then exploits these patterns to improve accuracy of the effect estimates. The core linear algebra is implemented in C++ for fast model fitting and posterior computation. |
Authors: | Matthew Stephens [aut], Sarah Urbut [aut], Gao Wang [aut], Yuxin Zou [aut], Yunqi Yang [ctb], Sam Roweis [cph], David Hogg [cph], Jo Bovy [cph], Peter Carbonetto [aut, cre] |
Maintainer: | Peter Carbonetto <[email protected]> |
License: | BSD_3_clause + file LICENSE |
Version: | 0.2.79 |
Built: | 2024-11-10 06:20:40 UTC |
Source: | CRAN |
Create contrast matrix
contrast_matrix(R, ref, name = 1:R)
contrast_matrix(R, ref, name = 1:R)
R |
the number of column for the contrast matrix |
ref |
the reference group. It could be a number between 1,..., R, R is number of conditions, or the name of reference group. If there is no reference group, it can be the string 'mean'. |
name |
a length R vector contains the name for conditions |
contrast_matrix(5, 'mean')
contrast_matrix(5, 'mean')
Compute a list of canonical covariance matrices
cov_canonical( data, cov_methods = c("identity", "singletons", "equal_effects", "simple_het") )
cov_canonical( data, cov_methods = c("identity", "singletons", "equal_effects", "simple_het") )
data |
a mash data object, eg as created by |
cov_methods |
a vector of strings indicating the matrices to
be used: "identity" for the identity (effects are independent among
conditions); "singletons" for the set of matrices with just one
non-zero entry |
The default is that this function computes covariance matrices corresponding to the "bmalite" models.
a list of covariance matrices
data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) cov_canonical(data) cov_canonical(data,"singletons") cov_canonical(data,c("id","sing")) # can use partial matching of names
data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) cov_canonical(data) cov_canonical(data,"singletons") cov_canonical(data,c("id","sing")) # can use partial matching of names
Perform "extreme deconvolution" (Bovy et al) on a subset of the data
cov_ed(data, Ulist_init, subset = NULL, algorithm = c("bovy", "teem"), ...)
cov_ed(data, Ulist_init, subset = NULL, algorithm = c("bovy", "teem"), ...)
data |
a mash data object |
Ulist_init |
a named list of covariance matrices to use to initialize ED; default is to use matrices from PCs |
subset |
a subset of data to be used when ED is run (set to NULL for all the data) |
algorithm |
algorithm to run ED |
... |
other arguments to be passed to ED algorith, see
|
Runs the extreme deconvolution algorithm from Bovy et al
(Annals of Applied Statistics) to estimate data-driven covariance
matrices. It can be initialized with, for example running cov_pca
with,
say, 5 PCs.
## Not run: data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) U_pca = cov_pca(data,2) U_x = apply(data$Bhat, 2, function(x) x - mean(x)) U_xx = t(U_x) %*% U_x / nrow(U_x) cov_ed(data,c(U_pca, list(xx = U_xx))) ## End(Not run)
## Not run: data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) U_pca = cov_pca(data,2) U_x = apply(data$Bhat, 2, function(x) x - mean(x)) U_xx = t(U_x) %*% U_x / nrow(U_x) cov_ed(data,c(U_pca, list(xx = U_xx))) ## End(Not run)
Perform Empirical Bayes Matrix Factorization using flashier, and return a list of candidate covariance matrices
cov_flash( data, factors = c("default", "nonneg"), subset = NULL, remove_singleton = FALSE, tag = NULL, output_model = NULL, greedy_args = list(), backfit_args = list() )
cov_flash( data, factors = c("default", "nonneg"), subset = NULL, remove_singleton = FALSE, tag = NULL, output_model = NULL, greedy_args = list(), backfit_args = list() )
data |
A “mash” data object. |
factors |
If |
subset |
Data samples (rows) used to estimate the
covariances. Sset to |
remove_singleton |
If |
tag |
How to name the covariance matrices. |
output_model |
The fitted flash model will be saved to this file
(using |
greedy_args |
List containing additional parameters passed to
|
backfit_args |
List containing additional parameters passed
to |
A list of covariance matrices.
# See https://stephenslab.github.io/mashr/articles/flash_mash.html # for an example
# See https://stephenslab.github.io/mashr/articles/flash_mash.html # for an example
Perform PCA on data and return list of candidate covariance matrices
cov_pca(data, npc, subset = NULL)
cov_pca(data, npc, subset = NULL)
data |
a mash data object |
npc |
the number of PCs to use |
subset |
indices of the subset of data to use (set to NULL for all data) |
Returns a list of covariance matrices: the npc rank-one
covariance matrices based on the first npc PCs, and the rank npc
covariance matrix. If flashier did not identify any factors,
NULL
is returned.
data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) cov_pca(data,2)
data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) cov_pca(data,2)
Compute a list of covariance matrices corresponding to the "Unassociated", "Directly associated" and "Indirectly associated" models
cov_udi(data, model = udi_model_matrix(n_conditions(data)))
cov_udi(data, model = udi_model_matrix(n_conditions(data)))
data |
a mash data object, eg as created by |
model |
a model matrix with R columns, where R is the number of conditions in the data; each row should be a vector of length R with elements "U","D" and "I" indicating whether each effect is Unassociated, Directly associated or Indirectly associated |
If model is specified then this returns the covariance matrices for those models. The default creates all possible models. For a desription of the "Unassociated", "Directly associated" and "Indirectly associated" models see Stephens M (2013), A unified framework for Association Analysis with Multiple Related Phenotypes, PloS ONE.
a named list of covariance matrices
data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) cov_udi(data) cov_udi(data,c('I','D'))
data = mash_set_data(Bhat = cbind(c(1,2),c(3,4)), Shat = cbind(c(1,1),c(1,1))) cov_udi(data) cov_udi(data,c('I','D'))
Estimates a null correlation matrix from data using simple z score threshold
estimate_null_correlation_simple(data, z_thresh = 2, est_cor = TRUE)
estimate_null_correlation_simple(data, z_thresh = 2, est_cor = TRUE)
data |
a mash data object, eg as created by |
z_thresh |
the z score threshold below which to call an effect null |
est_cor |
whether to estimate correlation matrix (TRUE) or the covariance matrix (FALSE). |
Returns a simple estimate of the correlation matrix (or covariance matrix) among conditions under the null. Specifically, the simple estimate is the empirical correlation (or covariance) matrix of the z scores for those effects that have (absolute) z score < z_thresh in all conditions.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) estimate_null_correlation_simple(data)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) estimate_null_correlation_simple(data)
We present a general algorithm to infer a d-dimensional distribution function given a set of heterogeneous, noisy observations or samples. This algorithm reconstructs the error-deconvolved or 'underlying' distribution function common to all samples, even when the individual samples have unique error and missing-data properties. The underlying distribution is modeled as a mixture of Gaussians, which is completely general. Model parameters are chosen to optimize a justified, scalar objective function: the logarithm of the probability of the data under the error-convolved model, where the error convolution is different for each data point. Optimization is performed by an Expectation Maximization (EM) algorithm, extended by a regularization technique and 'split-and-merge' procedure. These extensions mitigate problems with singularities and local maxima, which are often encountered when using the EM algorithm to estimate Gaussian density mixtures.
extreme_deconvolution( ydata, ycovar, xamp, xmean, xcovar, projection = NULL, weight = NULL, fixamp = NULL, fixmean = NULL, fixcovar = NULL, tol = 1e-06, maxiter = 1e+09, w = 0, logfile = NULL, splitnmerge = 0, maxsnm = FALSE, likeonly = FALSE, logweight = FALSE )
extreme_deconvolution( ydata, ycovar, xamp, xmean, xcovar, projection = NULL, weight = NULL, fixamp = NULL, fixmean = NULL, fixcovar = NULL, tol = 1e-06, maxiter = 1e+09, w = 0, logfile = NULL, splitnmerge = 0, maxsnm = FALSE, likeonly = FALSE, logweight = FALSE )
ydata |
[ndata,dy] matrix of observed quantities |
ycovar |
[ndata,dy] / [ndata,dy,dy] / [dy,dy,ndata] matrix, list or 3D array of observational error covariances (if [ndata,dy] then the error correlations are assumed to vanish) |
xamp |
[ngauss] array of initial amplitudes (*not* [1,ngauss]) |
xmean |
[ngauss,dx] matrix of initial means |
xcovar |
[ngauss,dx,dx] list of matrices of initial covariances |
projection |
[ndata,dy,dx] list of projection matrices |
weight |
[ndata] array of weights to be applied to the data points |
fixamp |
(default=None) None, True/False, or list of bools |
fixmean |
(default=None) None, True/False, or list of bools |
fixcovar |
(default=None) None, True/False, or list of bools |
tol |
(double, default=1.e-6) tolerance for convergence |
maxiter |
(long, default= 10**9) maximum number of iterations to perform |
w |
(double, default=0.) covariance regularization parameter (of the conjugate prior) |
logfile |
basename for several logfiles (_c.log has output from the c-routine; _loglike.log has the log likelihood path of all the accepted routes, i.e. only parts which increase the likelihood are included, during splitnmerge) |
splitnmerge |
(int, default=0) depth to go down the splitnmerge path |
maxsnm |
(Bool, default=False) use the maximum number of split 'n' merge steps, K*(K-1)*(K-2)/2 |
likeonly |
(Bool, default=False) only compute the total log likelihood of the data |
logweight |
(bool, default=False) if True, weight is actually log(weight) |
avgloglikedata |
avgloglikedata after convergence |
xamp |
updated xamp |
xmean |
updated xmean |
xcovar |
updated xcovar |
Jo Bovy, David W. Hogg, & Sam T. Roweis
Inferring complete distribution functions from noisy, heterogeneous and incomplete observations Jo Bovy, David W. Hogg, & Sam T. Roweis, Submitted to AOAS (2009) [arXiv/0905.2979]
## Not run: ydata <- c(2.62434536, 0.38824359, 0.47182825, -0.07296862, 1.86540763, -1.30153870, 2.74481176, 0.23879310, 1.31903910, 0.75062962, 2.46210794, -1.06014071, 0.67758280, 0.61594565, 2.13376944, -0.09989127, 0.82757179, 0.12214158, 1.04221375, 1.58281521, -0.10061918, 2.14472371, 1.90159072, 1.50249434, 1.90085595, 0.31627214, 0.87710977, 0.06423057, 0.73211192, 1.53035547, 0.30833925, 0.60324647, 0.31282730, 0.15479436, 0.32875387, 0.98733540, -0.11731035, 1.23441570, 2.65980218, 1.74204416, 0.80816445, 0.11237104, 0.25284171, 2.69245460, 1.05080775, 0.36300435, 1.19091548, 3.10025514, 1.12015895, 1.61720311, 1.30017032, 0.64775015, -0.14251820, 0.65065728, 0.79110577, 1.58662319, 1.83898341, 1.93110208, 1.28558733, 1.88514116, 0.24560206, 2.25286816, 1.51292982, 0.70190717, 1.48851815, 0.92442829, 2.13162939, 2.51981682, 3.18557541, -0.39649633, -0.44411380, 0.49553414, 1.16003707, 1.87616892, 1.31563495, -1.02220122, 0.69379599, 1.82797464, 1.23009474, 1.76201118, 0.77767186, 0.79924193, 1.18656139, 1.41005165, 1.19829972, 1.11900865, 0.32933771, 1.37756379, 1.12182127, 2.12948391, 2.19891788, 1.18515642, 0.62471505, 0.36126959, 1.42349435, 1.07734007, 0.65614632, 1.04359686, 0.37999916, 1.69803203, 0.55287144, 2.22450770, 1.40349164, 1.59357852, -0.09491185, 1.16938243, 1.74055645, 0.04629940, 0.73378149, 1.03261455, -0.37311732, 1.31515939, 1.84616065, 0.14048406, 1.35054598, -0.31228341, 0.96130449, -0.61577236, 2.12141771, 1.40890054, 0.97538304, 0.22483838, 2.27375593, 2.96710175, -0.85798186, 2.23616403, 2.62765075, 1.33801170, -0.19926803, 1.86334532, 0.81907970, 0.39607937, -0.23005814, 1.55053750, 1.79280687, 0.37646927, 1.52057634, -0.14434139, 1.80186103, 1.04656730, 0.81343023, 0.89825413, 1.86888616, 1.75041164, 1.52946532, 1.13770121, 1.07782113, 1.61838026, 1.23249456, 1.68255141, 0.68988323, -1.43483776, 2.03882460, 3.18697965, 1.44136444, 0.89984477, 0.86355526, 0.88094581, 1.01740941, -0.12201873, 0.48290554, 0.00297317, 1.24879916, 0.70335885, 1.49521132, 0.82529684, 1.98633519, 1.21353390, 3.19069973, -0.89636092, 0.35308331, 1.90148689, 3.52832571, 0.75136522, 1.04366899, 0.77368576, 2.33145711, 0.71269214, 1.68006984, 0.68019840, -0.27255875, 1.31354772, 1.50318481, 2.29322588, 0.88955297, 0.38263794, 1.56276110, 1.24073709, 1.28066508, 0.92688730, 2.16033857, 1.36949272, 2.90465871, 2.11105670, 1.65904980, -0.62743834, 1.60231928, 1.42028220, 1.81095167, 2.04444209) ydata <- matrix(ydata,length(ydata),1) N <- dim(ydata)[1] ycovar <- ydata*0 + 0.01 xamp <- c(0.5,0.5) xmean <- matrix(c(0.86447943, 0.67078879, 0.322681, 0.45087394),2,2) xcovar <- list(matrix(c(0.03821028, 0.04014796, 0.04108113, 0.03173839),2,2), matrix(c(0.06219194, 0.09738021, 0.04302473, 0.06778009),2,2)) projection <- list() for (i in 1:N) projection[[i]] = matrix(c(i%%2,(i+1)%%2),1,2) res <- extreme_deconvolution(ydata, ycovar, xamp, xmean, xcovar, projection=projection, logfile="ExDeconDemo") ## End(Not run)
## Not run: ydata <- c(2.62434536, 0.38824359, 0.47182825, -0.07296862, 1.86540763, -1.30153870, 2.74481176, 0.23879310, 1.31903910, 0.75062962, 2.46210794, -1.06014071, 0.67758280, 0.61594565, 2.13376944, -0.09989127, 0.82757179, 0.12214158, 1.04221375, 1.58281521, -0.10061918, 2.14472371, 1.90159072, 1.50249434, 1.90085595, 0.31627214, 0.87710977, 0.06423057, 0.73211192, 1.53035547, 0.30833925, 0.60324647, 0.31282730, 0.15479436, 0.32875387, 0.98733540, -0.11731035, 1.23441570, 2.65980218, 1.74204416, 0.80816445, 0.11237104, 0.25284171, 2.69245460, 1.05080775, 0.36300435, 1.19091548, 3.10025514, 1.12015895, 1.61720311, 1.30017032, 0.64775015, -0.14251820, 0.65065728, 0.79110577, 1.58662319, 1.83898341, 1.93110208, 1.28558733, 1.88514116, 0.24560206, 2.25286816, 1.51292982, 0.70190717, 1.48851815, 0.92442829, 2.13162939, 2.51981682, 3.18557541, -0.39649633, -0.44411380, 0.49553414, 1.16003707, 1.87616892, 1.31563495, -1.02220122, 0.69379599, 1.82797464, 1.23009474, 1.76201118, 0.77767186, 0.79924193, 1.18656139, 1.41005165, 1.19829972, 1.11900865, 0.32933771, 1.37756379, 1.12182127, 2.12948391, 2.19891788, 1.18515642, 0.62471505, 0.36126959, 1.42349435, 1.07734007, 0.65614632, 1.04359686, 0.37999916, 1.69803203, 0.55287144, 2.22450770, 1.40349164, 1.59357852, -0.09491185, 1.16938243, 1.74055645, 0.04629940, 0.73378149, 1.03261455, -0.37311732, 1.31515939, 1.84616065, 0.14048406, 1.35054598, -0.31228341, 0.96130449, -0.61577236, 2.12141771, 1.40890054, 0.97538304, 0.22483838, 2.27375593, 2.96710175, -0.85798186, 2.23616403, 2.62765075, 1.33801170, -0.19926803, 1.86334532, 0.81907970, 0.39607937, -0.23005814, 1.55053750, 1.79280687, 0.37646927, 1.52057634, -0.14434139, 1.80186103, 1.04656730, 0.81343023, 0.89825413, 1.86888616, 1.75041164, 1.52946532, 1.13770121, 1.07782113, 1.61838026, 1.23249456, 1.68255141, 0.68988323, -1.43483776, 2.03882460, 3.18697965, 1.44136444, 0.89984477, 0.86355526, 0.88094581, 1.01740941, -0.12201873, 0.48290554, 0.00297317, 1.24879916, 0.70335885, 1.49521132, 0.82529684, 1.98633519, 1.21353390, 3.19069973, -0.89636092, 0.35308331, 1.90148689, 3.52832571, 0.75136522, 1.04366899, 0.77368576, 2.33145711, 0.71269214, 1.68006984, 0.68019840, -0.27255875, 1.31354772, 1.50318481, 2.29322588, 0.88955297, 0.38263794, 1.56276110, 1.24073709, 1.28066508, 0.92688730, 2.16033857, 1.36949272, 2.90465871, 2.11105670, 1.65904980, -0.62743834, 1.60231928, 1.42028220, 1.81095167, 2.04444209) ydata <- matrix(ydata,length(ydata),1) N <- dim(ydata)[1] ycovar <- ydata*0 + 0.01 xamp <- c(0.5,0.5) xmean <- matrix(c(0.86447943, 0.67078879, 0.322681, 0.45087394),2,2) xcovar <- list(matrix(c(0.03821028, 0.04014796, 0.04108113, 0.03173839),2,2), matrix(c(0.06219194, 0.09738021, 0.04302473, 0.06778009),2,2)) projection <- list() for (i in 1:N) projection[[i]] = matrix(c(i%%2,(i+1)%%2),1,2) res <- extreme_deconvolution(ydata, ycovar, xamp, xmean, xcovar, projection=projection, logfile="ExDeconDemo") ## End(Not run)
Return the estimated mixture proportions
get_estimated_pi(m, dimension = c("cov", "grid", "all"))
get_estimated_pi(m, dimension = c("cov", "grid", "all"))
m |
the mash result |
dimension |
indicates whether you want the mixture proportions for the covariances, grid, or all |
If the fit was done with 'usepointmass=TRUE' then the first element of the returned vector will correspond to the null, and the remaining elements to the non-null covariance matrices. Suppose the fit was done with $K$ covariances and a grid of length $L$. If 'dimension=cov' then the returned vector will be of length $K$ (or $K+1$ if 'usepointmass=TRUE'). If 'dimension=grid' then the returned vector will be of length $L$ (or $L+1$). If 'dimension=all' then the returned vector will be of length $LK$ (or $LK+1$). The names of the vector will be informative for which combination each element corresponds to.
a named vector containing the estimated mixture proportions.
Return the Bayes Factor for each effect
get_log10bf(m)
get_log10bf(m)
m |
the mash result (from joint or 1by1 analysis); must have been computed using usepointmass=TRUE |
if m was fitted using usepointmass=TRUE then returns a vector of the log10(bf) values for each effect. That is, the jth element lbf[j] is log10(Pr(Bj | g=ghat-nonnull)/Pr(Bj | g = 0)) where ghat-nonnull is the non-null part of ghat. Otherwise returns NULL.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_log10bf(m)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_log10bf(m)
Count number of conditions each effect is significant in
get_n_significant_conditions( m, thresh = 0.05, conditions = NULL, sig_fn = get_lfsr )
get_n_significant_conditions( m, thresh = 0.05, conditions = NULL, sig_fn = get_lfsr )
m |
the mash result (from joint or 1by1 analysis) |
thresh |
indicates the threshold below which to call signals significant |
conditions |
which conditions to include in check (default to all) |
sig_fn |
the significance function used to extract significance from mash object; eg could be ashr::get_lfsr or ashr::get_lfdr |
a vector containing the number of significant conditions
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_n_significant_conditions(m)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_n_significant_conditions(m)
Compute the proportion of (significant) signals shared by magnitude in each pair of conditions, based on the poterior mean
get_pairwise_sharing(m, factor = 0.5, lfsr_thresh = 0.05, FUN = identity)
get_pairwise_sharing(m, factor = 0.5, lfsr_thresh = 0.05, FUN = identity)
m |
the mash fit |
factor |
a number in [0,1] the factor within which effects are considered to be shared |
lfsr_thresh |
the lfsr threshold for including an effect in the assessment |
FUN |
a function to be applied to the estimated effect sizes before assessing sharing. The most obvious choice beside the default 'FUN=identity' would be 'FUN=abs' if you want to ignore the sign of the effects when assesing sharing. |
For each pair of tissues, first identify the effects that are significant (by lfsr<lfsr_thresh) in at least one of the two tissues. Then compute what fraction of these have an estimated (posterior mean) effect size within a factor 'factor' of one another. The results are returned as an R by R matrix.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_pairwise_sharing(m) # sharing by magnitude (same sign) get_pairwise_sharing(m, factor=0) # sharing by sign get_pairwise_sharing(m, FUN=abs) # sharing by magnitude when sign is ignored
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_pairwise_sharing(m) # sharing by magnitude (same sign) get_pairwise_sharing(m, factor=0) # sharing by sign get_pairwise_sharing(m, FUN=abs) # sharing by magnitude when sign is ignored
Compute the proportion of (significant) signals shared by magnitude in each pair of conditions
get_pairwise_sharing_from_samples( m, factor = 0.5, lfsr_thresh = 0.05, FUN = identity )
get_pairwise_sharing_from_samples( m, factor = 0.5, lfsr_thresh = 0.05, FUN = identity )
m |
the mash fit with samples from posteriors |
factor |
a number in [0,1] the factor within which effects are considered to be shared |
lfsr_thresh |
the lfsr threshold for including an effect in the assessment |
FUN |
a function to be applied to the estimated effect sizes before assessing sharing. The most obvious choice beside the default 'FUN=identity' would be 'FUN=abs' if you want to ignore the sign of the effects when assesing sharing. |
For each pair of conditions, compute the fraction of effects that are within a factor 'factor' of one another. The results are returned as an R by R matrix.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data), posterior_samples=5, algorithm='R') get_pairwise_sharing_from_samples(m) # sharing by magnitude (same sign) get_pairwise_sharing_from_samples(m, factor=0) # sharing by sign get_pairwise_sharing_from_samples(m, FUN=abs) # sharing by magnitude when sign is ignored
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data), posterior_samples=5, algorithm='R') get_pairwise_sharing_from_samples(m) # sharing by magnitude (same sign) get_pairwise_sharing_from_samples(m, factor=0) # sharing by sign get_pairwise_sharing_from_samples(m, FUN=abs) # sharing by magnitude when sign is ignored
Return samples from a mash object
get_samples(m)
get_samples(m)
m |
The mash fit. |
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data), posterior_samples=5, algorithm='R') get_samples(m)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data), posterior_samples=5, algorithm='R') get_samples(m)
Find effects that are significant in at least one condition
get_significant_results(m, thresh = 0.05, conditions = NULL, sig_fn = get_lfsr)
get_significant_results(m, thresh = 0.05, conditions = NULL, sig_fn = get_lfsr)
m |
the mash result (from joint or 1by1 analysis) |
thresh |
indicates the threshold below which to call signals significant |
conditions |
which conditions to include in check (default to all) |
sig_fn |
the significance function used to extract significance from mash object; eg could be ashr::get_lfsr or ashr::get_lfdr. (Small values must indicate significant.) |
a vector containing the indices of the significant effects, by order of most significant to least
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_significant_results(m)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) get_significant_results(m)
Apply mash method to data
mash( data, Ulist = NULL, gridmult = sqrt(2), grid = NULL, normalizeU = TRUE, usepointmass = TRUE, g = NULL, fixg = FALSE, prior = c("nullbiased", "uniform"), nullweight = 10, optmethod = c("mixSQP", "mixIP", "mixEM", "cxxMixSquarem"), control = list(), verbose = TRUE, add.mem.profile = FALSE, algorithm.version = c("Rcpp", "R"), pi_thresh = 1e-10, A = NULL, posterior_samples = 0, seed = 123, outputlevel = 2, output_lfdr = FALSE )
mash( data, Ulist = NULL, gridmult = sqrt(2), grid = NULL, normalizeU = TRUE, usepointmass = TRUE, g = NULL, fixg = FALSE, prior = c("nullbiased", "uniform"), nullweight = 10, optmethod = c("mixSQP", "mixIP", "mixEM", "cxxMixSquarem"), control = list(), verbose = TRUE, add.mem.profile = FALSE, algorithm.version = c("Rcpp", "R"), pi_thresh = 1e-10, A = NULL, posterior_samples = 0, seed = 123, outputlevel = 2, output_lfdr = FALSE )
data |
a mash data object containing the Bhat matrix, standard
errors, alpha value; created using |
Ulist |
a list of covariance matrices to use
(see |
gridmult |
scalar indicating factor by which adjacent grid values should differ; close to 1 for fine grid |
grid |
vector of grid values to use (scaling factors omega in paper) |
normalizeU |
whether or not to normalize the U covariances to have maximum of 1 on diagonal |
usepointmass |
whether to include a point mass at 0, corresponding to null in every condition |
g |
the value of g obtained from a previous mash fit - an alternative to supplying Ulist, grid and usepointmass |
fixg |
if g is supplied, allows the mixture proportions to be fixed rather than estimated; e.g., useful for fitting mash to test data after fitting it to training data |
prior |
indicates what penalty to use on the likelihood, if any |
nullweight |
scalar, the weight put on the prior under “nullbiased” specification, see “prior”. |
optmethod |
name of optimization method to use |
control |
A list of control parameters passed to optmethod. |
verbose |
If |
add.mem.profile |
If |
algorithm.version |
Indicates whether to use R or Rcpp version |
pi_thresh |
threshold below which mixture components are ignored in computing posterior summaries (to speed calculations by ignoring negligible components) |
A |
the linear transformation matrix, Q x R matrix. This is used to compute the posterior for Ab. |
posterior_samples |
the number of samples to be drawn from the posterior distribution of each effect. |
seed |
A random number seed to use when sampling from the
posteriors. It is used when |
outputlevel |
controls amount of computation / output; 1: output only estimated mixture component proportions, 2: and posterior estimates, 3: and posterior covariance matrices, 4: and likelihood matrices |
output_lfdr |
If |
a list with elements result, loglik and fitted_g
Bhat = matrix(rnorm(100),ncol=5) # create some simulated data Shat = matrix(rep(1,100),ncol=5) data = mash_set_data(Bhat,Shat, alpha=1) U.c = cov_canonical(data) res.mash = mash(data,U.c) # Run mash with penalty exponent on null term equal to 100. # See "False disovery rates: a new deal" (M. Stephens 2017), # supplementary material S.2.5 for more details. set.seed(1) simdata = simple_sims(500,5,1) data = mash_set_data(simdata$Bhat,simdata$Shat) U.c = cov_canonical(data) res0 = mash(data,U.c) res1 = mash(data,U.c,prior = "nullbiased",nullweight = 101) plot(res0$fitted_g$pi,res1$fitted_g$pi,pch = 20) abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
Bhat = matrix(rnorm(100),ncol=5) # create some simulated data Shat = matrix(rep(1,100),ncol=5) data = mash_set_data(Bhat,Shat, alpha=1) U.c = cov_canonical(data) res.mash = mash(data,U.c) # Run mash with penalty exponent on null term equal to 100. # See "False disovery rates: a new deal" (M. Stephens 2017), # supplementary material S.2.5 for more details. set.seed(1) simdata = simple_sims(500,5,1) data = mash_set_data(simdata$Bhat,simdata$Shat) U.c = cov_canonical(data) res0 = mash(data,U.c) res1 = mash(data,U.c,prior = "nullbiased",nullweight = 101) plot(res0$fitted_g$pi,res1$fitted_g$pi,pch = 20) abline(a = 0,b = 1,col = "skyblue",lty = "dashed")
Performs simple "condition-by-condition" analysis by
running ash
from package ashr
on data from each
condition, one at a time. May be a useful first step to identify
top hits in each condition before a mash analysis.
mash_1by1(data, alpha = 0, ...)
mash_1by1(data, alpha = 0, ...)
data |
A list with the following two elements: |
alpha |
Numeric value of alpha parameter in the model. alpha = 0 for Exchangeable Effects (EE), alpha = 1 for Exchangeable Z-scores (EZ). |
... |
optionally, other parameters to be passed to ash |
A list similar to the output of mash, particularly including posterior matrices.
simdata = simple_sims(50,5,1) mash_1by1(simdata)
simdata = simple_sims(50,5,1) mash_1by1(simdata)
Compute loglikelihood for fitted mash object on new data.
mash_compute_loglik(g, data, algorithm.version = c("Rcpp", "R"))
mash_compute_loglik(g, data, algorithm.version = c("Rcpp", "R"))
g |
A mash object or the fitted_g from a mash object. |
data |
A set of data on which to compute the loglikelihood. |
algorithm.version |
Indicate R or Rcpp version |
The log-likelihood for each element is where
and
.
The log-likelihood for data computed using g.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_loglik(m,data)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_loglik(m,data)
Compute posterior matrices for fitted mash object on new data
mash_compute_posterior_matrices( g, data, pi_thresh = 1e-10, algorithm.version = c("Rcpp", "R"), A = NULL, output_posterior_cov = FALSE, posterior_samples = 0, seed = 123 )
mash_compute_posterior_matrices( g, data, pi_thresh = 1e-10, algorithm.version = c("Rcpp", "R"), A = NULL, output_posterior_cov = FALSE, posterior_samples = 0, seed = 123 )
g |
a mash object or the fitted_g from a mash object. |
data |
a set of data on which to compute the posterior matrices |
pi_thresh |
threshold below which mixture components are ignored in computing posterior summaries (to speed calculations by ignoring negligible components) |
algorithm.version |
Indicates whether to use R or Rcpp version |
A |
the linear transformation matrix, Q x R matrix. This is used to compute the posterior for Ab. |
output_posterior_cov |
whether or not to output posterior covariance matrices for all effects |
posterior_samples |
the number of samples to be drawn from the posterior distribution of each effect. |
seed |
a random number seed to use when sampling from the
posteriors. It is used when |
A list of posterior matrices
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_posterior_matrices(m,data)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_posterior_matrices(m,data)
Compute vector of loglikelihood for fitted mash object on new data
mash_compute_vloglik(g, data, algorithm.version = c("Rcpp", "R"))
mash_compute_vloglik(g, data, algorithm.version = c("Rcpp", "R"))
g |
A mash object. |
data |
A set of data on which to compute the loglikelihood. |
algorithm.version |
Indicate R or Rcpp version |
The log-likelihood for each element is where
and
Here the value
of
is set when setting up the data object in
'mash_set_data'. If g is a mash object (safest!) then the function
will check that this value matches the
used when
fitting 'mash'. Note: as a convenience, this function can also be
called with g a mixture distribution with same structure as the
fitted_g from a mash object. This is mostly useful when doing
simulations, where you might want to compute the likelihood under
the "true" g. When used in this way the user is responsible for
making sure that the g makes sense with the alpha set in data.
The vector of log-likelihoods for each data point computed using g.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_vloglik(m,data)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_compute_vloglik(m,data)
Estimates a residual correlation matrix from data using an ad hoc EM algorithm.
mash_estimate_corr_em( data, Ulist, init, max_iter = 30, tol = 1, est_cor = TRUE, track_fit = FALSE, prior = c("nullbiased", "uniform"), details = TRUE, ... )
mash_estimate_corr_em( data, Ulist, init, max_iter = 30, tol = 1, est_cor = TRUE, track_fit = FALSE, prior = c("nullbiased", "uniform"), details = TRUE, ... )
data |
a mash data object, eg as created by |
Ulist |
a list of covariance matrices to use |
init |
the initial value for the residual correlation. If it is
not given, we use result from
|
max_iter |
maximum number of iterations to perform |
tol |
convergence tolerance |
est_cor |
whether to estimate correlation matrix (TRUE) or the covariance matrix (FALSE) |
track_fit |
add an attribute |
prior |
indicates what penalty to use on the likelihood, if any |
details |
whether to return details of the model, if it is TRUE, the mash model, the number of iterations and the value of objective functions will be returned |
... |
other parameters pass to |
Returns the estimated residual correlation matrix among conditions. We estimate the residual correlation matrix using an ad hoc em algorithm. The update in the ad hoc M step is not guaranteed to increase the likelihood, therefore, the EM algorithm is stopped before the likelihood drops. The residual correlation matrix V is estimated using the posterior second moment of the noise.
Warning: This method could take some time. The
estimate_null_correlation_simple
gives a quick
approximation for the null correlation matrix.
the estimated correlation matrix and the
fitted mash model
V |
estimated residual correlation matrix |
mash.model |
fitted mash model |
simdata = simple_sims(100,5,1) m.1by1 = mash_1by1(mash_set_data(simdata$Bhat,simdata$Shat)) strong.subset = get_significant_results(m.1by1,0.05) random.subset = sample(1:nrow(simdata$Bhat),20) data.strong = mash_set_data(simdata$Bhat[strong.subset,], simdata$Shat[strong.subset,]) data.tmp = mash_set_data(simdata$Bhat[random.subset,], simdata$Shat[random.subset,]) U_pca = cov_pca(data.strong, 3) U_ed = cov_ed(data.strong, U_pca) Vhat = mash_estimate_corr_em(data.tmp, U_ed)
simdata = simple_sims(100,5,1) m.1by1 = mash_1by1(mash_set_data(simdata$Bhat,simdata$Shat)) strong.subset = get_significant_results(m.1by1,0.05) random.subset = sample(1:nrow(simdata$Bhat),20) data.strong = mash_set_data(simdata$Bhat[strong.subset,], simdata$Shat[strong.subset,]) data.tmp = mash_set_data(simdata$Bhat[random.subset,], simdata$Shat[random.subset,]) U_pca = cov_pca(data.strong, 3) U_ed = cov_ed(data.strong, U_pca) Vhat = mash_estimate_corr_em(data.tmp, U_ed)
Plot metaplot for an effect based on posterior from mash
mash_plot_meta(m, i, xlab = "Effect size", ylab = "Condition", ...)
mash_plot_meta(m, i, xlab = "Effect size", ylab = "Condition", ...)
m |
the result of a mash fit |
i |
index of the effect to plot |
xlab |
Character string specifying x-axis label. |
ylab |
Character string specifying y-axis label. |
... |
Additional arguments passed to |
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_plot_meta(m,1)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) m = mash(data, cov_canonical(data)) mash_plot_meta(m,1)
Create a data object for mash analysis.
mash_set_data( Bhat, Shat = NULL, alpha = 0, df = Inf, pval = NULL, V = diag(ncol(Bhat)), zero_check_tol = .Machine$double.eps, zero_Bhat_Shat_reset = 0, zero_Shat_reset = 0 )
mash_set_data( Bhat, Shat = NULL, alpha = 0, df = Inf, pval = NULL, V = diag(ncol(Bhat)), zero_check_tol = .Machine$double.eps, zero_Bhat_Shat_reset = 0, zero_Shat_reset = 0 )
Bhat |
An N by R matrix of observed estimates. |
Shat |
An N by R matrix of corresponding standard errors. Shat can be a scalar if all standard errors are equal. This is most useful if Bhat is a matrix of Z scores, so elements of Shat are all 1. Default is 1. |
alpha |
Numeric value of alpha parameter in the model. alpha = 0 for Exchangeable Effects (EE), alpha = 1 for Exchangeable Z-scores (EZ). Default is 0. Please refer to equation (3.2) of M. Stephens 2016, Biostatistics for a discussion on alpha. |
df |
An N by R matrix of corresponding degrees of freedom of the t-statistic Bhat/Shat. Can be a scalar if all degrees of freedom are equal. Default is inf (for large samples). |
pval |
An N by R matrix of p-values of t-statistic Bhat/Shat. Shat and df should not be specified when pval is provided. |
V |
an R by R matrix / [R x R x N] array of effect specific correlation matrix of error correlations; must be positive definite. [So Bhat_j distributed as N(B_j,diag(Shat_j) V[,,j] diag(Shat_j)) where _j denotes the jth row of a matrix]. Defaults to identity. |
zero_check_tol |
a small positive number as threshold for Shat to be considered zero if any Shat is smaller or equal to this number. |
zero_Bhat_Shat_reset |
Replace zeros in Shat matrix to given value if the corresponding Bhat are also zeros. |
zero_Shat_reset |
Replace zeros in Shat matrix to given value. |
A data object for passing into mash functions.
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat)
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat)
This function can update two parts of the mash data. The first one is setting the reference group, so the mash data can be used for commonbaseline analysis. The other one is updating the null correlation matrix.
mash_update_data(mashdata, ref = NULL, V = NULL)
mash_update_data(mashdata, ref = NULL, V = NULL)
mashdata |
mash data object ontaining the Bhat matrix,
standard errors, V; created using |
ref |
the reference group. It could be a number between 1,..., R, R is number of conditions, or the name of reference group. If there is no reference group, it can be the string 'mean'. |
V |
an R by R matrix / [R x R x N] array of correlation matrix of error correlations |
a updated mash data object
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) mash_update_data(data, 'mean')
simdata = simple_sims(50,5,1) data = mash_set_data(simdata$Bhat, simdata$Shat) mash_update_data(data, 'mean')
Create simplest simulation, cj = mu 1 data used for contrast analysis
sim_contrast1(nsamp = 100, ncond = 5, err_sd = sqrt(0.5))
sim_contrast1(nsamp = 100, ncond = 5, err_sd = sqrt(0.5))
nsamp |
number of samples of each type |
ncond |
number of conditions |
err_sd |
the standard deviation of the errors |
There is no true deviation exists in this case
sim_contrast1(100,5)
sim_contrast1(100,5)
Create simulation with signal data used for contrast analysis.
sim_contrast2(nsamp = 1000, ncond = 5, err_sd = sqrt(0.5))
sim_contrast2(nsamp = 1000, ncond = 5, err_sd = sqrt(0.5))
nsamp |
Number of samples of each type. |
ncond |
Number of conditions. |
err_sd |
The standard deviation of the errors. |
The first condition is the reference group. The deviations are the difference between the subsequent conditions with the reference group. The simulation consists of 90 10 different types of deviations: equal among conditions, present only in the first subsequent condition, independent across conditions.
sim_contrast2(100,5)
sim_contrast2(100,5)
Create some simple simulated data for testing purposes
simple_sims(nsamp = 100, ncond = 5, err_sd = 0.01)
simple_sims(nsamp = 100, ncond = 5, err_sd = 0.01)
nsamp |
number of samples of each type |
ncond |
number of conditions |
err_sd |
the standard deviation of the errors |
The simulation consists of equal numbers of four different types of effects: null, equal among conditions, present only in first condition, independent across conditions
simple_sims(100, 5)
simple_sims(100, 5)
Create some more simple simulated data for testing purposes
simple_sims2(nsamp = 100, err_sd = 0.01)
simple_sims2(nsamp = 100, err_sd = 0.01)
nsamp |
number of samples of each type |
err_sd |
the standard deviation of the errors |
The simulation consists of five conditions with two types of effecc those present (and identical) in first two conditions and those present (and identical) in last three conditions
simple_sims2(100, 5)
simple_sims2(100, 5)