Package: jSDM 0.2.6

Jeanne Clément

jSDM: Joint Species Distribution Models

Fits joint species distribution models ('jSDM') in a hierarchical Bayesian framework (Warton and al. 2015 <doi:10.1016/j.tree.2015.09.007>). The Gibbs sampler is written in 'C++'. It uses 'Rcpp', 'Armadillo' and 'GSL' to maximize computation efficiency.

Authors:Jeanne Clément [aut, cre], Ghislain Vieilledent [aut], Frédéric Gosselin [ctb], CIRAD [cph, fnd]

jSDM_0.2.6.tar.gz
jSDM_0.2.6.tar.gz(r-4.5-noble)jSDM_0.2.6.tar.gz(r-4.4-noble)
jSDM_0.2.6.tgz(r-4.4-emscripten)jSDM_0.2.6.tgz(r-4.3-emscripten)
jSDM.pdf |jSDM.html
jSDM/json (API)
NEWS

# Install 'jSDM' in R:
install.packages('jSDM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ghislainv/jsdm/issues

Uses libs:
  • gsl– GNU Scientific Library (GSL)
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

3.83 score 68 scripts 293 downloads 12 exports 12 dependencies

Last updated 1 years agofrom:537940d3f3. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-linux-x86_64NOTENov 13 2024

Exports:get_enviro_corget_residual_corinv_logitjSDM_binomial_logitjSDM_binomial_probitjSDM_binomial_probit_long_formatjSDM_binomial_probit_sp_constrainedjSDM_gaussianjSDM_poisson_loglogitplot_associationsplot_residual_cor

Dependencies:codacodetoolscorrplotdoParallelforeachiteratorslatticeMASSRcppRcppArmadilloRcppGSLstringi

Bayesian inference methods

Rendered fromproof.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2023-03-02
Started: 2022-03-08

Get started with jSDM

Rendered fromjSDM.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2023-07-22
Started: 2019-07-02