Title: | Joint Species Distribution Models |
---|---|
Description: | Fits joint species distribution models ('jSDM') in a hierarchical Bayesian framework (Warton and al. 2015 <doi:10.1016/j.tree.2015.09.007>). The Gibbs sampler is written in 'C++'. It uses 'Rcpp', 'Armadillo' and 'GSL' to maximize computation efficiency. |
Authors: | Jeanne Clément [aut, cre] , Ghislain Vieilledent [aut] , Frédéric Gosselin [ctb] , CIRAD [cph, fnd] |
Maintainer: | Jeanne Clément <[email protected]> |
License: | GPL-3 |
Version: | 0.2.6 |
Built: | 2024-12-13 07:10:01 UTC |
Source: | CRAN |
jSDM
is an R package for fitting joint species distribution models (JSDM) in a hierarchical Bayesian framework.
The Gibbs sampler is written in 'C++'. It uses 'Rcpp', 'Armadillo' and 'GSL' to maximize computation efficiency.
Package: | jSDM |
Type: | Package |
Version: | 0.2.1 |
Date: | 2019-01-11 |
License: | GPL-3 |
LazyLoad: | yes |
The package includes the following functions to fit various species distribution models :
function | data-type |
jSDM_binomial_logit |
presence-absence |
jSDM_binomial_probit |
presence-absence |
jSDM_binomial_probit_sp_constrained |
presence-absence |
jSDM_binomial_probit_long_format |
presence-absence |
jSDM_poisson_log |
abundance |
jSDM_binomial_probit
:
Ecological process:
where
if n_latent=0 and site_effect="none" |
probit |
if n_latent>0 and site_effect="none" |
probit |
if n_latent=0 and site_effect="fixed" |
probit and |
if n_latent>0 and site_effect="fixed" |
probit |
if n_latent=0 and site_effect="random" |
probit |
if n_latent>0 and site_effect="random" |
probit and |
jSDM_binomial_probit_sp_constrained
:
This function allows to fit the same models than the function jSDM_binomial_probit
except for models not including latent variables, indeed n_latent
must be greater than zero in this function.
At first, the function fit a JSDM with the constrained species arbitrarily chosen as the first ones in the presence-absence data-set.
Then, the function evaluates the convergence of MCMC chains using the Gelman-Rubin convergence diagnostic (
).
It identifies the species (
) having the higher
for
.
These species drive the structure of the latent axis
.
The
corresponding to this species are constrained to be positive and placed on the diagonal of the
matrix for fitting a second model.
This usually improves the convergence of the latent variables and factor loadings. The function returns the parameter posterior distributions for this second model.
jSDM_binomial_logit
:
Ecological process :
where
if n_latent=0 and site_effect="none" |
logit |
if n_latent>0 and site_effect="none" |
logit |
if n_latent=0 and site_effect="fixed" |
logit |
if n_latent>0 and site_effect="fixed" |
logit |
if n_latent=0 and site_effect="random" |
logit and |
if n_latent>0 and site_effect="random" |
logit and |
jSDM_poisson_log
:
Ecological process :
where
if n_latent=0 and site_effect="none" |
log |
if n_latent>0 and site_effect="none" |
log |
if n_latent=0 and site_effect="fixed" |
log |
if n_latent>0 and site_effect="fixed" |
log |
if n_latent=0 and site_effect="random" |
log and |
if n_latent>0 and site_effect="random" |
log and |
jSDM_binomial_probit_long_format
:
Ecological process:
such as and
,
where
if n_latent=0 and site_effect="none" |
probit |
if n_latent>0 and site_effect="none" |
probit |
if n_latent=0 and site_effect="fixed" |
probit and |
if n_latent>0 and site_effect="fixed" |
probit |
if n_latent=0 and site_effect="random" |
probit |
if n_latent>0 and site_effect="random" |
probit and |
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Frédéric Gosselin <[email protected]>
Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.
This dataset describe the distribution of 82 species of Alpine plants in 75 sites. Species traits and environmental variables are also measured.
data("aravo")
data("aravo")
aravo is a list containing the following objects :
spe
is a data.frame with the abundance values of 82 species (columns) in 75 sites (rows).
env
is a data.frame with the measurements of 6 environmental variables for the sites.
traits
is data.frame with the measurements of 8 traits for the species.
spe.names
is a vector with full species names.
The environmental variables are :
Aspect |
Relative south aspect (opposite of the sine of aspect with flat coded 0) |
Slope |
Slope inclination (degrees) |
Form |
Microtopographic landform index: 1 (convexity); 2 (convex slope); 3 (right slope); |
4 (concave slope); 5 (concavity) | |
Snow |
Mean snowmelt date (Julian day) averaged over 1997-1999 |
PhysD |
Physical disturbance, i.e., percentage of unvegetated soil due to physical processes |
ZoogD |
Zoogenic disturbance, i.e., quantity of unvegetated soil due to marmot activity: no; some; high |
The species traits for the plants are:
Height |
Vegetative height (cm) |
Spread |
Maximum lateral spread of clonal plants (cm) |
Angle |
Leaf elevation angle estimated at the middle of the lamina |
Area |
Area of a single leaf |
Thick |
Maximum thickness of a leaf cross section (avoiding the midrib) |
SLA |
Specific leaf area |
Nmass |
Mass-based leaf nitrogen content |
Seed |
Seed mass |
Choler, P. (2005) Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic, and Alpine Research 37,444-453.
Dray S, Dufour A (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1-20. doi:10.18637/jss.v022.i04.
data(aravo, package="jSDM") summary(aravo)
data(aravo, package="jSDM") summary(aravo)
The Swiss breeding bird survey ("Monitoring Häufige Brutvögel" MHB) has monitored the populations of 158 common species since 1999.
The MHB sample from data(MHB2014, package="AHMbook")
consists of 267 1-km squares that are laid out as a grid across Switzerland. Fieldwork is conducted by about 200 skilled birdwatchers, most of them volunteers. Avian populations are monitored using a simplified territory mapping protocol, where each square is surveyed up to three times during the breeding season (only twice above the tree line).
Surveys are conducted along a transect that does not change over the years. The birds
dataset has the data for 2014, except one quadrat not surveyed in 2014.
data("birds")
data("birds")
A data frame with 266 observations on the following 166 variables.
158 bird species named in latin and whose occurrences are indicated as the number of visits to each site during which the species was observed, including 13 species not recorded in the year 2014 and 5 covariates collected on the 266 1x1 km quadrat as well as their identifiers and coordinates :
siteID |
an alphanumeric site identifier |
coordx |
a numeric vector indicating the x coordinate of the centre of the quadrat. |
The coordinate reference system is not specified intentionally. | |
coordy |
a numeric vector indicating the y coordinate of the centre of the quadrat. |
elev |
a numeric vector indicating the mean elevation of the quadrat (m). |
rlength |
the length of the route walked in the quadrat (km). |
nsurvey |
a numeric vector indicating the number of replicate surveys planned in the quadrat; |
above the tree-line 2, otherwise 3. | |
forest |
a numeric vector indicating the percentage of forest cover in the quadrat. |
obs14 |
a categorical vector indicating the identifying number of the observer. |
Only the Latin names of bird species are given in this dataset but you can find the corresponding English names in the original dataset : data(MHB2014, package="AHMbook")
.
Swiss Ornithological Institute
Kéry and Royle (2016) Applied Hierarachical Modeling in Ecology Section 11.3
data(birds, package="jSDM") head(birds) # find species not recorded in 2014 which(colSums(birds[,1:158])==0)
data(birds, package="jSDM") head(birds) # find species not recorded in 2014 which(colSums(birds[,1:158])==0)
The Eucalyptus data set includes 12 taxa recorded in 458 plots spanning elevation gradients in the Grampians National Park, Victoria, which is known for high species diversity and endemism. The park has three mountain ranges interspersed with alluvial valleys and sand sheet and has a semi-Mediterranean climate with warm, dry summers and cool, wet winters.
This dataset records presence or absence at 458 sites of 12 eucalypts species, 7 covariates collected at these sites as well as their longitude and latitude.
data("eucalypts")
data("eucalypts")
A data frame with 458 observations on the following 21 variables.
12 eucalypts species which presence on sites is indicated by a 1 and absence by a 0 :
ALA
a binary vector indicating the occurrence of the species E. alaticaulis
ARE
a binary vector indicating the occurrence of the species E. arenacea
BAX
a binary vector indicating the occurrence of the species E. baxteri
CAM
a binary vector indicating the occurrence of the species E. camaldulensis
GON
a binary vector indicating the occurrence of the species E. goniocalyx
MEL
a binary vector indicating the occurrence of the species E. melliodora
OBL
a binary vector indicating the occurrence of the species E. oblique
OVA
a binary vector indicating the occurrence of the species E. ovata
WIL
a binary vector indicating the occurrence of the species E. willisii subsp. Falciformis
ALP
a binary vector indicating the occurrence of the species E. serraensis, E. verrucata and E. victoriana
VIM
a binary vector indicating the occurrence of the species E. viminalis subsp. Viminalis and Cygnetensis
ARO.SAB
a binary vector indicating the occurrence of the species E. aromaphloia and E. sabulosa
7 covariates collected on the 458 sites and their coordinates :
Rockiness
a numeric vector taking values from 0 to 95 corresponding to the rock cover of the site in percent estimated in 5 % increments in field plots
Sandiness
a binary vector indicating if soil texture categorie is sandiness based on soil texture classes from field plots and according to relative amounts of sand, silt, and clay particles
VallyBotFlat
a numeric vector taking values from 0 to 6 corresponding to the valley bottom flatness GIS-derived variable defining flat areas relative to surroundings likely to accumulate sediment (units correspond to the percentage of slope e.g. 0.5 = 16 %slope, 4.5 = 1 %slope, 5.5 = 0.5 %slope)
PPTann
a numeric vector taking values from 555 to 1348 corresponding to annual precipitation in millimeters measured as the sum of monthly precipitation estimated using BIOCLIM based on 20m grid cell Digital Elevation Model
Loaminess
a binary vector indicating if soil texture categorie is loaminess based on soil texture classes from field plots and according to relative amounts of sand, silt, and clay particles
cvTemp
a numeric vector taking values from 136 to 158 corresponding to coefficient of variation of temperature seasonality in percent measured as the standard deviation of weekly mean temperatures as a percentage of the annual mean temperature from BIOCLIM
T0
a numeric vector corresponding to solar radiation in measured as the amount of incident solar energy based on the visible sky and the sun's position. Derived from Digital Elevation Model in ArcGIS 9.2 Spatial Analyst for the summer solstice (December 22)
latitude
a numeric vector indicating the latitude of the studied site
longitude
a numeric vector indicating the longitude of the studied site
Wilkinson, D. P.; Golding, N.; Guillera-Arroita, G.; Tingley, R. and McCarthy, M. A. (2018) A comparison of joint species distribution models for presence-absence data. Methods in Ecology and Evolution.
data(eucalypts, package="jSDM") head(eucalypts)
data(eucalypts, package="jSDM") head(eucalypts)
Presence or absence of 9 species of frogs at 104 sites, 3 covariates collected at these sites and their coordinates.
frogs
is a data frame with 104 observations on the following 14 variables.
Species_
1 to 9 indicate by a 0 the absence of the species on one site and by a 1 its presence
Covariates_
1 and 3 continuous variables
Covariates_
2 discrete variables
x
a numeric vector of first coordinates corresponding to each site
y
a numeric vector of second coordinates corresponding to each site
Wilkinson, D. P.; Golding, N.; Guillera-Arroita, G.; Tingley, R. and McCarthy, M. A. (2018) A comparison of joint species distribution models for presence-absence data. Methods in Ecology and Evolution.
data(frogs, package="jSDM") head(frogs)
data(frogs, package="jSDM") head(frogs)
Presence or absence of 11 species of fungi on dead-wood objects at 800 sites and 12 covariates collected at these sites.
data("fungi")
data("fungi")
A data frame with 800 observations on the following 23 variables :
11 fungi species which presence on sites is indicated by a 1 and absence by a 0 :
antser
a binary vector
antsin
a binary vector
astfer
a binary vector
fompin
a binary vector
hetpar
a binary vector
junlut
a binary vector
phefer
a binary vector
phenig
a binary vector
phevit
a binary vector
poscae
a binary vector
triabi
a binary vector
12 covariates collected on the 800 sites :
diam
a numeric vector indicating the diameter of dead-wood object
dc1
a binary vector indicating if the decay class is 1 measured in the scale 1, 2, 3, 4, 5 (from freshly decayed to almost completely decayed)
dc2
a binary vector indicating if the decay class is 2
dc3
a binary vector indicating if the decay class is 3
dc4
a binary vector indicating if the decay class is 4
dc5
a binary vector indicating if the decay class is 5
quality3
a binary vector indicating if the quality is level 3
quality4
a binary vector indicating if the quality is level 4
ground3
a binary vector indicating if the ground contact is level 3 as 2 = no ground contact, 3 = less than half of the log in ground contact and 4 = more than half of the log in ground contact
ground4
a binary vector a binary vector indicating if the ground contact is level 4
epi
a numeric vector indicating the epiphyte cover
bark
a numeric vector indicating the bark cover
Wilkinson, D. P.; Golding, N.; Guillera-Arroita, G.; Tingley, R. and McCarthy, M. A. (2018) A comparison of joint species distribution models for presence-absence data. Methods in Ecology and Evolution.
data(fungi, package="jSDM") head(fungi)
data(fungi, package="jSDM") head(fungi)
Calculates the correlation between columns of the response matrix, due to similarities in the response to explanatory variables i.e., shared environmental response.
get_enviro_cor(mod, type = "mean", prob = 0.95)
get_enviro_cor(mod, type = "mean", prob = 0.95)
mod |
An object of class |
type |
A choice of either the posterior median ( |
prob |
A numeric scalar in the interval |
In both independent response and correlated response models, where each of the columns of the response matrix are fitted to a set of explanatory variables given by
,
the covariance between two columns
and
, due to similarities in their response to the model matrix, is thus calculated based on the linear predictors
and
, where
are species effects relating to the explanatory variables.
Such correlation matrices are discussed and found in Ovaskainen et al., (2010), Pollock et al., (2014).
results, a list including :
cor , cor.lower , cor.upper
|
A set of |
cor.sig |
A |
cov |
Average over the MCMC samples of the |
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Hui FKC (2016). “boral: Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R.” Methods in Ecology and Evolution, 7, 744–750.
Ovaskainen et al. (2010). Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. Ecology, 91, 2514-2521.
Pollock et al. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397-406.
cov2cor
get_residual_cor
jSDM-package
jSDM_binomial_probit
jSDM_binomial_logit
jSDM_poisson_log
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2], scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) Env_frogs <- as.data.frame(Env_frogs) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod <- jSDM_binomial_probit(# Response variable presence_data=PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=0, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, # Various seed=1234, verbose=1) # Calcul of residual correlation between species enviro.cors <- get_enviro_cor(mod)
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2], scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) Env_frogs <- as.data.frame(Env_frogs) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod <- jSDM_binomial_probit(# Response variable presence_data=PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=0, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, # Various seed=1234, verbose=1) # Calcul of residual correlation between species enviro.cors <- get_enviro_cor(mod)
This function use coefficients with
and
, corresponding to latent variables fitted using
jSDM
package, to calculate the variance-covariance matrix which controls correlation between species.
get_residual_cor(mod, prob = 0.95, type = "mean")
get_residual_cor(mod, prob = 0.95, type = "mean")
mod |
An object of class |
prob |
A numeric scalar in the interval |
type |
A choice of either the posterior median ( |
After fitting the jSDM with latent variables, the fullspecies residual correlation matrix : with
and
can be derived from the covariance in the latent variables such as :
, in the case of a regression with probit, logit or poisson link function and
|
|
if i=j |
|
else, |
, in the case of a linear regression with a response variable such as
. Then we compute correlations from covariances :
.
results A list including :
cov.mean |
Average over the MCMC samples of the variance-covariance matrix, if |
cov.median |
Median over the MCMC samples of the variance-covariance matrix, if |
cov.lower |
A |
cov.upper |
A |
cov.sig |
A |
cor.mean |
Average over the MCMC samples of the residual correlation matrix, if |
cor.median |
Median over the MCMC samples of the residual correlation matrix, if |
cor.lower |
A |
cor.upper |
A |
cor.sig |
A |
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Hui FKC (2016). boral: Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R. Methods in Ecology and Evolution, 7, 744–750.
Ovaskainen and al. (2016). Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods in Ecology and Evolution, 7, 549-555.
Pollock and al. (2014). Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution, 5, 397-406.
get_enviro_cor
cov2cor
jSDM-package
jSDM_binomial_probit
jSDM_binomial_logit
jSDM_poisson_log
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) Env_frogs <- as.data.frame(Env_frogs) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod <- jSDM_binomial_probit(# Response variable presence_data=PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, verbose=1) # Calcul of residual correlation between species result <- get_residual_cor(mod, prob=0.95, type="mean") # Residual variance-covariance matrix result$cov.mean ## All non-significant co-variances are set to zero. result$cov.mean * result$cov.sig # Residual correlation matrix result$cor.mean ## All non-significant correlations are set to zero. result$cor.mean * result$cor.sig
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) Env_frogs <- as.data.frame(Env_frogs) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod <- jSDM_binomial_probit(# Response variable presence_data=PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, verbose=1) # Calcul of residual correlation between species result <- get_residual_cor(mod, prob=0.95, type="mean") # Residual variance-covariance matrix result$cov.mean ## All non-significant co-variances are set to zero. result$cov.mean * result$cov.sig # Residual correlation matrix result$cor.mean ## All non-significant correlations are set to zero. result$cor.mean * result$cor.sig
Compute generalized inverse logit function.
inv_logit(x, min = 0, max = 1)
inv_logit(x, min = 0, max = 1)
x |
value(s) to be transformed |
min |
Lower end of logit interval |
max |
Upper end of logit interval |
The generalized inverse logit function takes values on [-Inf,Inf] and transforms them to span [min, max] :
y Transformed value(s).
Gregory R. Warnes <[email protected]>
x <- seq(0,10, by=0.25) xt <- jSDM::logit(x, min=0, max=10) cbind(x,xt) y <- jSDM::inv_logit(xt, min=0, max=10) cbind(x,xt,y)
x <- seq(0,10, by=0.25) xt <- jSDM::logit(x, min=0, max=10) cbind(x,xt) y <- jSDM::inv_logit(xt, min=0, max=10) cbind(x,xt,y)
The jSDM_binomial_logit
function performs a Binomial logistic regression in a Bayesian framework. The function calls a Gibbs sampler written in 'C++' code which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution of model's parameters.
jSDM_binomial_logit( burnin = 5000, mcmc = 10000, thin = 10, presence_data, site_formula, trait_data = NULL, trait_formula = NULL, site_data, trials = NULL, n_latent = 0, site_effect = "none", beta_start = 0, gamma_start = 0, lambda_start = 0, W_start = 0, alpha_start = 0, V_alpha = 1, shape_Valpha = 0.5, rate_Valpha = 5e-04, mu_beta = 0, V_beta = 10, mu_gamma = 0, V_gamma = 10, mu_lambda = 0, V_lambda = 10, ropt = 0.44, seed = 1234, verbose = 1 )
jSDM_binomial_logit( burnin = 5000, mcmc = 10000, thin = 10, presence_data, site_formula, trait_data = NULL, trait_formula = NULL, site_data, trials = NULL, n_latent = 0, site_effect = "none", beta_start = 0, gamma_start = 0, lambda_start = 0, W_start = 0, alpha_start = 0, V_alpha = 1, shape_Valpha = 0.5, rate_Valpha = 5e-04, mu_beta = 0, V_beta = 10, mu_gamma = 0, V_gamma = 10, mu_lambda = 0, V_lambda = 10, ropt = 0.44, seed = 1234, verbose = 1 )
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to |
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
presence_data |
A matrix |
site_formula |
A one-sided formula of the form '~x1+...+xp' specifying the explanatory variables for the suitability process of the model,
used to form the design matrix |
trait_data |
A data frame containing the species traits which can be included as part of the model. Default to |
trait_formula |
A one-sided formula of the form '~ t1 + ... + tk + x1:t1 + ... + xp:tk' specifying the interactions between the environmental variables and the species traits to be considered in the model,
used to form the trait design matrix |
site_data |
A data frame containing the model's explanatory variables by site. |
trials |
A vector indicating the number of trials for each site. |
n_latent |
An integer which specifies the number of latent variables to generate. Defaults to |
site_effect |
A string indicating whether row effects are included as fixed effects ( |
beta_start |
Starting values for |
gamma_start |
Starting values for |
lambda_start |
Starting values for |
W_start |
Starting values for latent variables must be either a scalar or a |
alpha_start |
Starting values for random site effect parameters must be either a scalar or a |
V_alpha |
Starting value for variance of random site effect if |
shape_Valpha |
Shape parameter of the Inverse-Gamma prior for the random site effect variance |
rate_Valpha |
Rate parameter of the Inverse-Gamma prior for the random site effect variance |
mu_beta |
Means of the Normal priors for the |
V_beta |
Variances of the Normal priors for the |
mu_gamma |
Means of the Normal priors for the |
V_gamma |
Variances of the Normal priors for the |
mu_lambda |
Means of the Normal priors for the |
V_lambda |
Variances of the Normal priors for the |
ropt |
Target acceptance rate for the adaptive Metropolis algorithm. Default to 0.44. |
seed |
The seed for the random number generator. Default to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
We model an ecological process where the presence or absence of species on site
is explained by habitat suitability.
Ecological process :
where
if n_latent=0 and site_effect="none" |
logit |
if n_latent>0 and site_effect="none" |
logit |
if n_latent=0 and site_effect="fixed" |
logit |
if n_latent>0 and site_effect="fixed" |
logit |
if n_latent=0 and site_effect="random" |
logit and |
if n_latent>0 and site_effect="random" |
logit and |
In the absence of data on species traits (trait_data=NULL
), the effect of species :
;
follows the same a priori Gaussian distribution such that
,
for each species.
If species traits data are provided, the effect of species :
;
follows an a priori Gaussian distribution such that
,
where
, takes different values for each species.
We assume that as prior distribution.
We define the matrix such as :
|
|
... | |
... | |
||
__________ | ________ | ________ | ________ | ________ | ________ | ||
| |
|
|
... | |
... | |
{ effect of |
| | intercept | environmental | |||||
| | variables | ||||||
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
average | |||||||
trait effect | interaction | traits | environment | ||||
An object of class "jSDM"
acting like a list including :
mcmc.alpha |
An mcmc object that contains the posterior samples for site effects |
mcmc.V_alpha |
An mcmc object that contains the posterior samples for variance of random site effect, not returned if |
mcmc.latent |
A list by latent variable of mcmc objects that contains the posterior samples for latent variables |
mcmc.sp |
A list by species of mcmc objects that contains the posterior samples for species effects |
mcmc.gamma |
A list by covariates of mcmc objects that contains the posterior samples for |
mcmc.Deviance |
The posterior sample of the deviance ( |
logit_theta_latent |
Predictive posterior mean of the probability to each species to be present on each site, transformed by logit link function. |
theta_latent |
Predictive posterior mean of the probability associated to the suitability process for each observation. |
model_spec |
Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin. |
The mcmc.
objects can be summarized by functions provided by the coda
package.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.
plot.mcmc
, summary.mcmc
jSDM_binomial_probit
jSDM_poisson_log
#============================================== # jSDM_binomial_logit() # Example with simulated data #============================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 50 #= Number of species nsp <- 10 #= Set seed for repeatability seed <- 1234 #= Number of visits associated to each site set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) set.seed(3*seed) W <- cbind(rnorm(nsite,0,1),rnorm(nsite,0,1)) n_latent <- ncol(W) l.zero <- 0 l.diag <- runif(2,0,2) l.other <- runif(nsp*2-3,-2,2) lambda.target <- matrix(c(l.diag[1],l.zero,l.other[1], l.diag[2],l.other[-1]), byrow=TRUE, nrow=nsp) beta.target <- matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp) V_alpha.target <- 0.5 alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) logit.theta <- X %*% t(beta.target) + W %*% t(lambda.target) + alpha.target theta <- inv_logit(logit.theta) set.seed(seed) Y <- apply(theta, 2, rbinom, n=nsite, size=visits) #= Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_binomial_logit(# Chains burnin=150, mcmc=150, thin=1, # Response variable presence_data=Y, trials=visits, # Explanatory variables site_formula=~x1+x2, site_data=X, n_latent=n_latent, site_effect="random", # Starting values beta_start=0, lambda_start=0, W_start=0, alpha_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, ropt=0.44, verbose=1) #========== #== Outputs #= Parameter estimates oldpar <- par(no.readonly = TRUE) ## beta_j # summary(mod$mcmc.sp$sp_1[,1:ncol(X)]) mean_beta <- matrix(0,nsp,np) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_logit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]][,1:ncol(X)], 2, mean) for (p in 1:ncol(X)) { coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames( mod$mcmc.sp[[j]])[p], ", species : ",j)) abline(v=beta.target[j,p],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_logit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[j,l],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(beta.target, mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(lambda.target, mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions par(mfrow=c(1,2)) plot(logit.theta, mod$logit_theta_latent, main="logit(theta)", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") plot(theta, mod$theta_latent, main="Probabilities of occurence theta", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") par(oldpar)
#============================================== # jSDM_binomial_logit() # Example with simulated data #============================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 50 #= Number of species nsp <- 10 #= Set seed for repeatability seed <- 1234 #= Number of visits associated to each site set.seed(seed) visits <- rpois(nsite,3) visits[visits==0] <- 1 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) set.seed(3*seed) W <- cbind(rnorm(nsite,0,1),rnorm(nsite,0,1)) n_latent <- ncol(W) l.zero <- 0 l.diag <- runif(2,0,2) l.other <- runif(nsp*2-3,-2,2) lambda.target <- matrix(c(l.diag[1],l.zero,l.other[1], l.diag[2],l.other[-1]), byrow=TRUE, nrow=nsp) beta.target <- matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp) V_alpha.target <- 0.5 alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) logit.theta <- X %*% t(beta.target) + W %*% t(lambda.target) + alpha.target theta <- inv_logit(logit.theta) set.seed(seed) Y <- apply(theta, 2, rbinom, n=nsite, size=visits) #= Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_binomial_logit(# Chains burnin=150, mcmc=150, thin=1, # Response variable presence_data=Y, trials=visits, # Explanatory variables site_formula=~x1+x2, site_data=X, n_latent=n_latent, site_effect="random", # Starting values beta_start=0, lambda_start=0, W_start=0, alpha_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, ropt=0.44, verbose=1) #========== #== Outputs #= Parameter estimates oldpar <- par(no.readonly = TRUE) ## beta_j # summary(mod$mcmc.sp$sp_1[,1:ncol(X)]) mean_beta <- matrix(0,nsp,np) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_logit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]][,1:ncol(X)], 2, mean) for (p in 1:ncol(X)) { coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames( mod$mcmc.sp[[j]])[p], ", species : ",j)) abline(v=beta.target[j,p],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_logit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[j,l],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(beta.target, mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(lambda.target, mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions par(mfrow=c(1,2)) plot(logit.theta, mod$logit_theta_latent, main="logit(theta)", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") plot(theta, mod$theta_latent, main="Probabilities of occurence theta", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") par(oldpar)
The jSDM_binomial_probit
function performs a Binomial probit regression in a Bayesian framework.
The function calls a Gibbs sampler written in 'C++' code which uses conjugate priors to estimate the conditional posterior distribution of model's parameters.
jSDM_binomial_probit( burnin = 5000, mcmc = 10000, thin = 10, presence_data, site_formula, trait_data = NULL, trait_formula = NULL, site_data, n_latent = 0, site_effect = "none", lambda_start = 0, W_start = 0, beta_start = 0, alpha_start = 0, gamma_start = 0, V_alpha = 1, mu_beta = 0, V_beta = 10, mu_lambda = 0, V_lambda = 10, mu_gamma = 0, V_gamma = 10, shape_Valpha = 0.5, rate_Valpha = 5e-04, seed = 1234, verbose = 1 )
jSDM_binomial_probit( burnin = 5000, mcmc = 10000, thin = 10, presence_data, site_formula, trait_data = NULL, trait_formula = NULL, site_data, n_latent = 0, site_effect = "none", lambda_start = 0, W_start = 0, beta_start = 0, alpha_start = 0, gamma_start = 0, V_alpha = 1, mu_beta = 0, V_beta = 10, mu_lambda = 0, V_lambda = 10, mu_gamma = 0, V_gamma = 10, shape_Valpha = 0.5, rate_Valpha = 5e-04, seed = 1234, verbose = 1 )
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to |
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
presence_data |
A matrix |
site_formula |
A one-sided formula of the form '~x1+...+xp' specifying the explanatory variables for the suitability process of the model,
used to form the design matrix |
trait_data |
A data frame containing the species traits which can be included as part of the model. Default to |
trait_formula |
A one-sided formula of the form '~ t1 + ... + tk + x1:t1 + ... + xp:tk' specifying the interactions between the environmental variables and the species traits to be considered in the model,
used to form the trait design matrix |
site_data |
A data frame containing the model's explanatory variables by site. |
n_latent |
An integer which specifies the number of latent variables to generate. Defaults to |
site_effect |
A string indicating whether row effects are included as fixed effects ( |
lambda_start |
Starting values for |
W_start |
Starting values for latent variables must be either a scalar or a |
beta_start |
Starting values for |
alpha_start |
Starting values for random site effect parameters must be either a scalar or a |
gamma_start |
Starting values for |
V_alpha |
Starting value for variance of random site effect if |
mu_beta |
Means of the Normal priors for the |
V_beta |
Variances of the Normal priors for the |
mu_lambda |
Means of the Normal priors for the |
V_lambda |
Variances of the Normal priors for the |
mu_gamma |
Means of the Normal priors for the |
V_gamma |
Variances of the Normal priors for the |
shape_Valpha |
Shape parameter of the Inverse-Gamma prior for the random site effect variance |
rate_Valpha |
Rate parameter of the Inverse-Gamma prior for the random site effect variance |
seed |
The seed for the random number generator. Default to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
We model an ecological process where the presence or absence of species on site
is explained by habitat suitability.
Ecological process:
where
if n_latent=0 and site_effect="none" |
probit |
if n_latent>0 and site_effect="none" |
probit |
if n_latent=0 and site_effect="random" |
probit and |
if n_latent>0 and site_effect="fixed" |
probit |
if n_latent=0 and site_effect="fixed" |
probit |
if n_latent>0 and site_effect="random" |
probit and |
In the absence of data on species traits (trait_data=NULL
), the effect of species :
;
follows the same a priori Gaussian distribution such that
,
for each species.
If species traits data are provided, the effect of species :
;
follows an a priori Gaussian distribution such that
,
where
, takes different values for each species.
We assume that as prior distribution.
We define the matrix such as :
|
|
... | |
... | |
||
__________ | ________ | ________ | ________ | ________ | ________ | ||
| |
|
|
... | |
... | |
{ effect of |
| | intercept | environmental | |||||
| | variables | ||||||
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
average | |||||||
trait effect | interaction | traits | environment | ||||
An object of class "jSDM"
acting like a list including :
mcmc.alpha |
An mcmc object that contains the posterior samples for site effects |
mcmc.V_alpha |
An mcmc object that contains the posterior samples for variance of random site effect, not returned if |
mcmc.latent |
A list by latent variable of mcmc objects that contains the posterior samples for latent variables |
mcmc.sp |
A list by species of mcmc objects that contains the posterior samples for species effects |
mcmc.gamma |
A list by covariates of mcmc objects that contains the posterior samples for |
mcmc.Deviance |
The posterior sample of the deviance ( |
Z_latent |
Predictive posterior mean of the latent variable Z. |
probit_theta_latent |
Predictive posterior mean of the probability to each species to be present on each site, transformed by probit link function. |
theta_latent |
Predictive posterior mean of the probability to each species to be present on each site. |
model_spec |
Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin. |
The mcmc.
objects can be summarized by functions provided by the coda
package.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.
plot.mcmc
, summary.mcmc
jSDM_binomial_logit
jSDM_poisson_log
jSDM_binomial_probit_sp_constrained
#====================================== # jSDM_binomial_probit() # Example with simulated data #==================================== #================= #== Load libraries library(jSDM) #================== #' #== Data simulation #= Number of sites nsite <- 150 #= Set seed for repeatability seed <- 1234 set.seed(seed) #= Number of species nsp<- 20 #= Number of latent variables n_latent <- 2 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Fixed species effect beta beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -2, 2), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] diag(lambda.target) <- runif(n_latent, 0, 2) #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha alpha.target <- rnorm(nsite,0 , sqrt(V_alpha.target)) # Simulation of response data with probit link probit_theta <- X%*%beta.target + W%*%lambda.target + alpha.target theta <- pnorm(probit_theta) e <- matrix(rnorm(nsp*nsite,0,1),nsite,nsp) # Latent variable Z Z_true <- probit_theta + e # Presence-absence matrix Y Y <- matrix (NA, nsite,nsp) for (i in 1:nsite){ for (j in 1:nsp){ if ( Z_true[i,j] > 0) {Y[i,j] <- 1} else {Y[i,j] <- 0} } } #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod<-jSDM_binomial_probit(# Iteration burnin=200, mcmc=200, thin=1, # Response variable presence_data=Y, # Explanatory variables site_formula=~x1+x2, site_data = X, n_latent=2, site_effect="random", # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, seed=1234, verbose=1) # =================================================== # Result analysis # =================================================== #========== #== Outputs oldpar <- par(no.readonly = TRUE) #= Parameter estimates ## beta_j mean_beta <- matrix(0,nsp,ncol(X)) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]] [,1:ncol(X)], 2, mean) for (p in 1:ncol(X)){ coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames(mod$mcmc.sp[[j]])[p],", species : ",j)) abline(v=beta.target[p,j],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[l,j],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(t(beta.target), mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(t(lambda.target), mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions ## Z par(mfrow=c(1,2)) plot(Z_true,mod$Z_latent, main="Z_latent", xlab="obs", ylab="fitted") abline(a=0,b=1,col='red') ## probit_theta plot(probit_theta,mod$probit_theta_latent, main="probit(theta)",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') ## probabilities theta par(mfrow=c(1,1)) plot(theta,mod$theta_latent, main="theta",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') par(oldpar)
#====================================== # jSDM_binomial_probit() # Example with simulated data #==================================== #================= #== Load libraries library(jSDM) #================== #' #== Data simulation #= Number of sites nsite <- 150 #= Set seed for repeatability seed <- 1234 set.seed(seed) #= Number of species nsp<- 20 #= Number of latent variables n_latent <- 2 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Fixed species effect beta beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -2, 2), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] diag(lambda.target) <- runif(n_latent, 0, 2) #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha alpha.target <- rnorm(nsite,0 , sqrt(V_alpha.target)) # Simulation of response data with probit link probit_theta <- X%*%beta.target + W%*%lambda.target + alpha.target theta <- pnorm(probit_theta) e <- matrix(rnorm(nsp*nsite,0,1),nsite,nsp) # Latent variable Z Z_true <- probit_theta + e # Presence-absence matrix Y Y <- matrix (NA, nsite,nsp) for (i in 1:nsite){ for (j in 1:nsp){ if ( Z_true[i,j] > 0) {Y[i,j] <- 1} else {Y[i,j] <- 0} } } #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod<-jSDM_binomial_probit(# Iteration burnin=200, mcmc=200, thin=1, # Response variable presence_data=Y, # Explanatory variables site_formula=~x1+x2, site_data = X, n_latent=2, site_effect="random", # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, seed=1234, verbose=1) # =================================================== # Result analysis # =================================================== #========== #== Outputs oldpar <- par(no.readonly = TRUE) #= Parameter estimates ## beta_j mean_beta <- matrix(0,nsp,ncol(X)) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]] [,1:ncol(X)], 2, mean) for (p in 1:ncol(X)){ coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames(mod$mcmc.sp[[j]])[p],", species : ",j)) abline(v=beta.target[p,j],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[l,j],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(t(beta.target), mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(t(lambda.target), mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions ## Z par(mfrow=c(1,2)) plot(Z_true,mod$Z_latent, main="Z_latent", xlab="obs", ylab="fitted") abline(a=0,b=1,col='red') ## probit_theta plot(probit_theta,mod$probit_theta_latent, main="probit(theta)",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') ## probabilities theta par(mfrow=c(1,1)) plot(theta,mod$theta_latent, main="theta",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') par(oldpar)
The jSDM_binomial_probit_long_format
function performs a Binomial probit regression in a Bayesian framework.
The function calls a Gibbs sampler written in 'C++' code which uses conjugate priors to estimate the conditional posterior distribution of model's parameters.
jSDM_binomial_probit_long_format( burnin = 5000, mcmc = 10000, thin = 10, data, site_formula, n_latent = 0, site_effect = "none", alpha_start = 0, gamma_start = 0, beta_start = 0, lambda_start = 0, W_start = 0, V_alpha = 1, shape_Valpha = 0.5, rate_Valpha = 5e-04, mu_gamma = 0, V_gamma = 10, mu_beta = 0, V_beta = 10, mu_lambda = 0, V_lambda = 10, seed = 1234, verbose = 1 )
jSDM_binomial_probit_long_format( burnin = 5000, mcmc = 10000, thin = 10, data, site_formula, n_latent = 0, site_effect = "none", alpha_start = 0, gamma_start = 0, beta_start = 0, lambda_start = 0, W_start = 0, V_alpha = 1, shape_Valpha = 0.5, rate_Valpha = 5e-04, mu_gamma = 0, V_gamma = 10, mu_beta = 0, V_beta = 10, mu_lambda = 0, V_lambda = 10, seed = 1234, verbose = 1 )
burnin |
The number of burnin iterations for the sampler. |
||||||||||||||
mcmc |
The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to |
||||||||||||||
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
||||||||||||||
data |
A
|
||||||||||||||
site_formula |
A one-sided formula, as the formulas used by the |
||||||||||||||
n_latent |
An integer which specifies the number of latent variables to generate. Defaults to |
||||||||||||||
site_effect |
A string indicating whether row effects are included as fixed effects ( |
||||||||||||||
alpha_start |
Starting values for random site effect parameters must be either a scalar or a |
||||||||||||||
gamma_start |
Starting values for gamma parameters of the suitability process must be either a scalar or a |
||||||||||||||
beta_start |
Starting values for beta parameters of the suitability process for each species must be either a scalar or a |
||||||||||||||
lambda_start |
Starting values for lambda parameters corresponding to the latent variables for each species must be either a scalar or a |
||||||||||||||
W_start |
Starting values for latent variables must be either a scalar or a |
||||||||||||||
V_alpha |
Starting value for variance of random site effect if |
||||||||||||||
shape_Valpha |
Shape parameter of the Inverse-Gamma prior for the random site effect variance |
||||||||||||||
rate_Valpha |
Rate parameter of the Inverse-Gamma prior for the random site effect variance |
||||||||||||||
mu_gamma |
Means of the Normal priors for the |
||||||||||||||
V_gamma |
Variances of the Normal priors for the |
||||||||||||||
mu_beta |
Means of the Normal priors for the |
||||||||||||||
V_beta |
Variances of the Normal priors for the |
||||||||||||||
mu_lambda |
Means of the Normal priors for the |
||||||||||||||
V_lambda |
Variances of the Normal priors for the |
||||||||||||||
seed |
The seed for the random number generator. Default to 1234. |
||||||||||||||
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
We model an ecological process where the presence or absence of species on site
is explained by habitat suitability.
Ecological process:
such as and
,
where :
if n_latent=0 and site_effect="none" |
probit |
if n_latent>0 and site_effect="none" |
probit |
if n_latent=0 and site_effect="fixed" |
probit and |
if n_latent>0 and site_effect="fixed" |
probit |
if n_latent=0 and site_effect="random" |
probit |
if n_latent>0 and site_effect="random" |
probit and
|
An object of class "jSDM"
acting like a list including :
mcmc.alpha |
An mcmc object that contains the posterior samples for site effects |
mcmc.V_alpha |
An mcmc object that contains the posterior samples for variance of random site effect, not returned if |
mcmc.latent |
A list by latent variable of mcmc objects that contains the posterior samples for latent variables |
mcmc.sp |
A list by species of mcmc objects that contains the posterior samples for species effects |
mcmc.gamma |
An mcmc objects that contains the posterior samples for parameters |
mcmc.Deviance |
The posterior sample of the deviance |
Z_latent |
Predictive posterior mean of the latent variable Z. |
probit_theta_latent |
Predictive posterior mean of the probability to each species to be present on each site, transformed by probit link function. |
theta_latent |
Predictive posterior mean of the probability to each species to be present on each site. |
model_spec |
Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin. |
The mcmc.
objects can be summarized by functions provided by the coda
package.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
plot.mcmc
, summary.mcmc
jSDM_binomial_probit
jSDM_binomial_logit
jSDM_poisson_log
#============================================== # jSDM_binomial_probit_long_format() # Example with simulated data #============================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 50 #= Set seed for repeatability seed <- 1234 set.seed(seed) #' #= Number of species nsp <- 25 #= Number of latent variables n_latent <- 2 #' # Ecological process (suitability) ## X x1 <- rnorm(nsite,0,1) x1.2 <- scale(x1^2) X <- cbind(rep(1,nsite),x1,x1.2) colnames(X) <- c("Int","x1","x1.2") np <- ncol(X) ## W W <- matrix(rnorm(nsite*n_latent,0,1),nrow=nsite,byrow=TRUE) ## D SLA <- runif(nsp,-1,1) D <- data.frame(x1.SLA= scale(c(x1 %*% t(SLA)))) nd <- ncol(D) ## parameters beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) mat <- t(matrix(runif(nsp*n_latent,-2,2), byrow=TRUE, nrow=nsp)) diag(mat) <- runif(n_latent,0,2) lambda.target <- matrix(0,n_latent,nsp) gamma.target <-runif(nd,-1,1) lambda.target[upper.tri(mat,diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) ## probit_theta probit_theta <- c(X %*% beta.target) + c(W %*% lambda.target) + as.matrix(D) %*% gamma.target + rep(alpha.target, nsp) # Supplementary observation (each site have been visited twice) # Environmental variables at the time of the second visit x1_supObs <- rnorm(nsite,0,1) x1.2_supObs <- scale(x1^2) X_supObs <- cbind(rep(1,nsite),x1_supObs,x1.2_supObs) D_supObs <- data.frame(x1.SLA=scale(c(x1_supObs %*% t(SLA)))) probit_theta_supObs <- c(X_supObs%*%beta.target) + c(W%*%lambda.target) + as.matrix(D_supObs) %*% gamma.target + alpha.target probit_theta <- c(probit_theta, probit_theta_supObs) nobs <- length(probit_theta) e <- rnorm(nobs,0,1) Z_true <- probit_theta + e Y<-rep(0,nobs) for (n in 1:nobs){ if ( Z_true[n] > 0) {Y[n] <- 1} } Id_site <- rep(1:nsite,nsp) Id_sp <- rep(1:nsp,each=nsite) data <- data.frame(site=rep(Id_site,2), species=rep(Id_sp,2), Y=Y, x1=c(rep(x1,nsp),rep(x1_supObs,nsp)), x1.2=c(rep(x1.2,nsp),rep(x1.2_supObs,nsp)), x1.SLA=c(D$x1.SLA,D_supObs$x1.SLA)) # missing observation data <- data[-1,] #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod<-jSDM_binomial_probit_long_format( # Iteration burnin=500, mcmc=500, thin=1, # Response variable data=data, # Explanatory variables site_formula=~ (x1 + x1.2):species + x1.SLA, n_latent=2, site_effect="random", # Starting values alpha_start=0, gamma_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_gamma=0, V_gamma=10, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, seed=1234, verbose=1) #= Parameter estimates oldpar <- par(no.readonly = TRUE) # gamma par(mfrow=c(2,2)) for(d in 1:nd){ coda::traceplot(mod$mcmc.gamma[,d]) coda::densplot(mod$mcmc.gamma[,d], main = colnames(mod$mcmc.gamma)[d]) abline(v=gamma.target[d],col='red') } ## beta_j mean_beta <- matrix(0,nsp,ncol(X)) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]] [,1:ncol(X)], 2, mean) for (p in 1:ncol(X)){ coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste0(colnames(mod$mcmc.sp[[j]])[p],"_sp",j)) abline(v=beta.target[p,j],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste0(colnames(mod$mcmc.sp[[j]])[ncol(X)+l], "_sp",j)) abline(v=lambda.target[l,j],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(t(beta.target), mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(t(lambda.target), mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha, main="Trace V_alpha") coda::densplot(mod$mcmc.V_alpha,main="Density V_alpha") abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions ## probit_theta par(mfrow=c(1,2)) plot(probit_theta[-1],mod$probit_theta_latent, main="probit(theta)",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') ## Z plot(Z_true[-1],mod$Z_latent, main="Z_latent", xlab="obs", ylab="fitted") abline(a=0,b=1,col='red') ## theta par(mfrow=c(1,1)) plot(pnorm(probit_theta[-1]),mod$theta_latent, main="theta",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') par(oldpar)
#============================================== # jSDM_binomial_probit_long_format() # Example with simulated data #============================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 50 #= Set seed for repeatability seed <- 1234 set.seed(seed) #' #= Number of species nsp <- 25 #= Number of latent variables n_latent <- 2 #' # Ecological process (suitability) ## X x1 <- rnorm(nsite,0,1) x1.2 <- scale(x1^2) X <- cbind(rep(1,nsite),x1,x1.2) colnames(X) <- c("Int","x1","x1.2") np <- ncol(X) ## W W <- matrix(rnorm(nsite*n_latent,0,1),nrow=nsite,byrow=TRUE) ## D SLA <- runif(nsp,-1,1) D <- data.frame(x1.SLA= scale(c(x1 %*% t(SLA)))) nd <- ncol(D) ## parameters beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) mat <- t(matrix(runif(nsp*n_latent,-2,2), byrow=TRUE, nrow=nsp)) diag(mat) <- runif(n_latent,0,2) lambda.target <- matrix(0,n_latent,nsp) gamma.target <-runif(nd,-1,1) lambda.target[upper.tri(mat,diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) ## probit_theta probit_theta <- c(X %*% beta.target) + c(W %*% lambda.target) + as.matrix(D) %*% gamma.target + rep(alpha.target, nsp) # Supplementary observation (each site have been visited twice) # Environmental variables at the time of the second visit x1_supObs <- rnorm(nsite,0,1) x1.2_supObs <- scale(x1^2) X_supObs <- cbind(rep(1,nsite),x1_supObs,x1.2_supObs) D_supObs <- data.frame(x1.SLA=scale(c(x1_supObs %*% t(SLA)))) probit_theta_supObs <- c(X_supObs%*%beta.target) + c(W%*%lambda.target) + as.matrix(D_supObs) %*% gamma.target + alpha.target probit_theta <- c(probit_theta, probit_theta_supObs) nobs <- length(probit_theta) e <- rnorm(nobs,0,1) Z_true <- probit_theta + e Y<-rep(0,nobs) for (n in 1:nobs){ if ( Z_true[n] > 0) {Y[n] <- 1} } Id_site <- rep(1:nsite,nsp) Id_sp <- rep(1:nsp,each=nsite) data <- data.frame(site=rep(Id_site,2), species=rep(Id_sp,2), Y=Y, x1=c(rep(x1,nsp),rep(x1_supObs,nsp)), x1.2=c(rep(x1.2,nsp),rep(x1.2_supObs,nsp)), x1.SLA=c(D$x1.SLA,D_supObs$x1.SLA)) # missing observation data <- data[-1,] #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod<-jSDM_binomial_probit_long_format( # Iteration burnin=500, mcmc=500, thin=1, # Response variable data=data, # Explanatory variables site_formula=~ (x1 + x1.2):species + x1.SLA, n_latent=2, site_effect="random", # Starting values alpha_start=0, gamma_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_gamma=0, V_gamma=10, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, seed=1234, verbose=1) #= Parameter estimates oldpar <- par(no.readonly = TRUE) # gamma par(mfrow=c(2,2)) for(d in 1:nd){ coda::traceplot(mod$mcmc.gamma[,d]) coda::densplot(mod$mcmc.gamma[,d], main = colnames(mod$mcmc.gamma)[d]) abline(v=gamma.target[d],col='red') } ## beta_j mean_beta <- matrix(0,nsp,ncol(X)) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]] [,1:ncol(X)], 2, mean) for (p in 1:ncol(X)){ coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste0(colnames(mod$mcmc.sp[[j]])[p],"_sp",j)) abline(v=beta.target[p,j],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste0(colnames(mod$mcmc.sp[[j]])[ncol(X)+l], "_sp",j)) abline(v=lambda.target[l,j],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(t(beta.target), mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(t(lambda.target), mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha, main="Trace V_alpha") coda::densplot(mod$mcmc.V_alpha,main="Density V_alpha") abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions ## probit_theta par(mfrow=c(1,2)) plot(probit_theta[-1],mod$probit_theta_latent, main="probit(theta)",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') ## Z plot(Z_true[-1],mod$Z_latent, main="Z_latent", xlab="obs", ylab="fitted") abline(a=0,b=1,col='red') ## theta par(mfrow=c(1,1)) plot(pnorm(probit_theta[-1]),mod$theta_latent, main="theta",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') par(oldpar)
The jSDM_binomial_probit_sp_constrained
function performs in parallel Binomial probit regressions in a Bayesian framework. The function calls a Gibbs sampler written in 'C++' code which uses conjugate priors to estimate the conditional posterior distribution of model's parameters. Then the function evaluates the convergence of MCMC chains using the Gelman-Rubin convergence diagnostic (
).
is computed using the
gelman.diag
function. We identify the species () having the higher
for
. These species drive the structure of the latent axis
. The
corresponding to this species are constrained to be positive and placed on the diagonal of the
matrix for fitting a second model. This usually improves the convergence of the latent variables and factor loadings. The function returns the parameter posterior distributions for this second model.
burnin |
The number of burn-in iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to |
thin |
The thinning interval used in the simulation. The number of MCMC iterations must be divisible by this value. |
nchains |
The number of Monte Carlo Markov Chains (MCMCs) simulated in parallel. If not specified, the number of chains is set to 2. |
ncores |
The number of cores to use for parallel execution. If not specified, the number of cores is set to 2. |
presence_data |
A matrix |
site_formula |
A one-sided formula of the form '~x1+...+xp' specifying the explanatory variables for the suitability process of the model,
used to form the design matrix |
site_data |
A data frame containing the model's explanatory variables by site. |
trait_data |
A data frame containing the species traits which can be included as part of the model. Default to |
trait_formula |
A one-sided formula of the form '~ t1 + ... + tk + x1:t1 + ... + xp:tk' specifying the interactions between the environmental variables and the species traits to be considered in the model,
used to form the trait design matrix |
n_latent |
An integer which specifies the number of latent variables to generate. Defaults to |
site_effect |
A string indicating whether row effects are included as fixed effects ( |
beta_start |
Starting values for |
gamma_start |
Starting values for |
lambda_start |
Starting values for |
W_start |
Starting values for latent variables must be either a scalar or a |
alpha_start |
Starting values for random site effect parameters must be either a scalar or a |
V_alpha |
Starting value for variance of random site effect if |
shape_Valpha |
Shape parameter of the Inverse-Gamma prior for the random site effect variance |
rate_Valpha |
Rate parameter of the Inverse-Gamma prior for the random site effect variance |
mu_beta |
Means of the Normal priors for the |
V_beta |
Variances of the Normal priors for the |
mu_gamma |
Means of the Normal priors for the |
V_gamma |
Variances of the Normal priors for the |
mu_lambda |
Means of the Normal priors for the |
V_lambda |
Variances of the Normal priors for the |
seed |
The seed for the random number generator. Default to |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
We model an ecological process where the presence or absence of species on site
is explained by habitat suitability.
Ecological process:
where
if n_latent=0 and site_effect="none" |
probit |
if n_latent>0 and site_effect="none" |
probit |
if n_latent=0 and site_effect="random" |
probit and |
if n_latent>0 and site_effect="fixed" |
probit |
if n_latent=0 and site_effect="fixed" |
probit |
if n_latent>0 and site_effect="random" |
probit and |
In the absence of data on species traits (trait_data=NULL
), the effect of species :
;
follows the same a priori Gaussian distribution such that
,
for each species.
If species traits data are provided, the effect of species :
;
follows an a priori Gaussian distribution such that
,
where
, takes different values for each species.
We assume that as prior distribution.
We define the matrix such as :
|
|
... | |
... | |
||
__________ | ________ | ________ | ________ | ________ | ________ | ||
| |
|
|
... | |
... | |
{ effect of |
| | intercept | environmental | |||||
| | variables | ||||||
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
average | |||||||
trait effect | interaction | traits | environment | ||||
A list of length nchains
where each element is an object of class "jSDM"
acting like a list including :
mcmc.alpha |
An mcmc object that contains the posterior samples for site effects |
mcmc.V_alpha |
An mcmc object that contains the posterior samples for variance of random site effect, not returned if |
mcmc.latent |
A list by latent variable of mcmc objects that contains the posterior samples for latent variables |
mcmc.sp |
A list by species of mcmc objects that contains the posterior samples for species effects |
mcmc.gamma |
A list by covariates of mcmc objects that contains the posterior samples for |
mcmc.Deviance |
The posterior sample of the deviance ( |
Z_latent |
Predictive posterior mean of the latent variable Z. |
probit_theta_latent |
Predictive posterior mean of the probability to each species to be present on each site, transformed by probit link function. |
theta_latent |
Predictive posterior mean of the probability to each species to be present on each site. |
model_spec |
Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin. |
sp_constrained |
Indicates the reference species ( |
The mcmc.
objects can be summarized by functions provided by the coda
package.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.
plot.mcmc
, summary.mcmc
mcmc.list
mcmc
gelman.diag
jSDM_binomial_probit
#====================================== # jSDM_binomial_probit_sp_constrained() # Example with simulated data #==================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 30 #= Set seed for repeatability seed <- 1234 set.seed(seed) #= Number of species nsp <- 10 #= Number of latent variables n_latent <- 2 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Fixed species effect beta beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -2, 2), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] diag(lambda.target) <- runif(n_latent, 0, 2) #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha alpha.target <- rnorm(nsite,0 , sqrt(V_alpha.target)) # Simulation of response data with probit link probit_theta <- X%*%beta.target + W%*%lambda.target + alpha.target theta <- pnorm(probit_theta) e <- matrix(rnorm(nsp*nsite,0,1),nsite,nsp) # Latent variable Z Z_true <- probit_theta + e # Presence-absence matrix Y Y <- matrix (NA, nsite,nsp) for (i in 1:nsite){ for (j in 1:nsp){ if ( Z_true[i,j] > 0) {Y[i,j] <- 1} else {Y[i,j] <- 0} } } #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_binomial_probit_sp_constrained(# Iteration burnin=100, mcmc=100, thin=1, # parallel MCMCs nchains=2, ncores=2, # Response variable presence_data=Y, # Explanatory variables site_formula=~x1+x2, site_data = X, n_latent=2, site_effect="random", # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, seed=c(123,1234), verbose=1) # =================================================== # Result analysis # =================================================== #========== #== Outputs oldpar <- par(no.readonly = TRUE) burnin <- mod[[1]]$model_spec$burnin ngibbs <- burnin + mod[[1]]$model_spec$mcmc thin <- mod[[1]]$model_spec$thin require(coda) arr2mcmc <- function(x) { return(mcmc(as.data.frame(x), start=burnin+1 , end=ngibbs, thin=thin)) } mcmc_list_Deviance <- mcmc.list(lapply(lapply(mod,"[[","mcmc.Deviance"), arr2mcmc)) mcmc_list_alpha <- mcmc.list(lapply(lapply(mod,"[[","mcmc.alpha"), arr2mcmc)) mcmc_list_V_alpha <- mcmc.list(lapply(lapply(mod,"[[","mcmc.V_alpha"), arr2mcmc)) mcmc_list_param <- mcmc.list(lapply(lapply(mod,"[[","mcmc.sp"), arr2mcmc)) mcmc_list_lv <- mcmc.list(lapply(lapply(mod,"[[","mcmc.latent"), arr2mcmc)) mcmc_list_beta <- mcmc_list_param[,grep("beta",colnames(mcmc_list_param[[1]]))] mcmc_list_beta0 <- mcmc_list_beta[,grep("Intercept", colnames(mcmc_list_beta[[1]]))] mcmc_list_lambda <- mcmc.list( lapply(mcmc_list_param[, grep("lambda", colnames(mcmc_list_param[[1]]))], arr2mcmc)) # Compute Rhat psrf_alpha <- mean(gelman.diag(mcmc_list_alpha, multivariate=FALSE)$psrf[,2]) psrf_V_alpha <- gelman.diag(mcmc_list_V_alpha)$psrf[,2] psrf_beta0 <- mean(gelman.diag(mcmc_list_beta0)$psrf[,2]) psrf_beta <- mean(gelman.diag(mcmc_list_beta[,grep("Intercept", colnames(mcmc_list_beta[[1]]), invert=TRUE)])$psrf[,2]) psrf_lambda <- mean(gelman.diag(mcmc_list_lambda, multivariate=FALSE)$psrf[,2], na.rm=TRUE) psrf_lv <- mean(gelman.diag(mcmc_list_lv, multivariate=FALSE)$psrf[,2]) Rhat <- data.frame(Rhat=c(psrf_alpha, psrf_V_alpha, psrf_beta0, psrf_beta, psrf_lambda, psrf_lv), Variable=c("alpha", "Valpha", "beta0", "beta", "lambda", "W")) # Barplot library(ggplot2) ggplot2::ggplot(Rhat, aes(x=Variable, y=Rhat)) + ggtitle("Averages of Rhat obtained with jSDM for each type of parameter") + theme(plot.title = element_text(hjust = 0.5, size=15)) + geom_bar(fill="skyblue", stat = "identity") + geom_text(aes(label=round(Rhat,2)), vjust=0, hjust=-0.1) + geom_hline(yintercept=1, color='red') + coord_flip() #= Parameter estimates nchains <- length(mod) ## beta_j pdf(file=file.path(tempdir(), "Posteriors_species_effect_jSDM_probit.pdf")) plot(mcmc_list_param) dev.off() ## Latent variables pdf(file=file.path(tempdir(), "Posteriors_latent_variables_jSDM_probit.pdf")) plot(mcmc_list_lv) dev.off() ## Random site effect and its variance pdf(file=file.path(tempdir(), "Posteriors_site_effect_jSDM_probit.pdf")) plot(mcmc_list_V_alpha) plot(mcmc_list_alpha) dev.off() ## Predictive posterior mean for each observation # Species effects beta and factor loadings lambda param <- list() for (i in 1:nchains){ param[[i]] <- matrix(unlist(lapply(mod[[i]]$mcmc.sp,colMeans)), nrow=nsp, byrow=TRUE) } par(mfrow=c(1,1)) for (i in 1:nchains){ if(i==1){ plot(t(beta.target), param[[i]][,1:np], main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else{ points(t(beta.target), param[[i]][,1:np], col=i) } } par(mfrow=c(1,2)) for(l in 1:n_latent){ for (i in 1:nchains){ if (i==1){ plot(t(lambda.target)[,l], param[[i]][,np+l], main=paste0("factor loadings lambda_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else { points(t(lambda.target)[,l], param[[i]][,np+l], col=i) } } } ## W latent variables mean_W <- list() for (i in 1:nchains){ mean_W[[i]] <- sapply(mod[[i]]$mcmc.latent,colMeans) } par(mfrow=c(1,2)) for (l in 1:n_latent) { for (i in 1:nchains){ if (i==1){ plot(W[,l], mean_W[[i]][,l], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else{ points(W[,l], mean_W[[i]][,l], col=i) } } } #= W.lambda par(mfrow=c(1,2)) for (i in 1:nchains){ if (i==1){ plot(W%*%lambda.target, mean_W[[i]]%*%t(param[[i]][,(np+1):(np+n_latent)]), main = "W.lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else{ points(W%*%lambda.target, mean_W[[i]]%*%t(param[[i]][,(np+1):(np+n_latent)]), col=i) } } # Site effect alpha et V_alpha plot(alpha.target,colMeans(mod[[1]]$mcmc.alpha), xlab="obs", ylab="fitted", main="Random site effect alpha") abline(a=0,b=1, col='red') points(V_alpha.target, mean(mod[[1]]$mcmc.V_alpha), pch=18, cex=2) legend("bottomright", legend=c("V_alpha"), pch =18, pt.cex=1.5) for (i in 2:nchains){ points(alpha.target, colMeans(mod[[i]]$mcmc.alpha), col=i) points(V_alpha.target, mean(mod[[i]]$mcmc.V_alpha), pch=18, col=i, cex=2) } #= Predictions ## Occurence probabilities plot(pnorm(probit_theta), mod[[1]]$theta_latent, main="theta",xlab="obs",ylab="fitted") for (i in 2:nchains){ points(pnorm(probit_theta), mod[[i]]$theta_latent, col=i) } abline(a=0,b=1, col='red') ## probit(theta) plot(probit_theta, mod[[1]]$probit_theta_latent, main="probit(theta)",xlab="obs",ylab="fitted") for (i in 2:nchains){ points(probit_theta, mod[[i]]$probit_theta_latent, col=i) } abline(a=0,b=1, col='red') ## Deviance plot(mcmc_list_Deviance) par(oldpar)
#====================================== # jSDM_binomial_probit_sp_constrained() # Example with simulated data #==================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 30 #= Set seed for repeatability seed <- 1234 set.seed(seed) #= Number of species nsp <- 10 #= Number of latent variables n_latent <- 2 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Fixed species effect beta beta.target <- t(matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -2, 2), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] diag(lambda.target) <- runif(n_latent, 0, 2) #= Variance of random site effect V_alpha.target <- 0.5 #= Random site effect alpha alpha.target <- rnorm(nsite,0 , sqrt(V_alpha.target)) # Simulation of response data with probit link probit_theta <- X%*%beta.target + W%*%lambda.target + alpha.target theta <- pnorm(probit_theta) e <- matrix(rnorm(nsp*nsite,0,1),nsite,nsp) # Latent variable Z Z_true <- probit_theta + e # Presence-absence matrix Y Y <- matrix (NA, nsite,nsp) for (i in 1:nsite){ for (j in 1:nsp){ if ( Z_true[i,j] > 0) {Y[i,j] <- 1} else {Y[i,j] <- 0} } } #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_binomial_probit_sp_constrained(# Iteration burnin=100, mcmc=100, thin=1, # parallel MCMCs nchains=2, ncores=2, # Response variable presence_data=Y, # Explanatory variables site_formula=~x1+x2, site_data = X, n_latent=2, site_effect="random", # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, seed=c(123,1234), verbose=1) # =================================================== # Result analysis # =================================================== #========== #== Outputs oldpar <- par(no.readonly = TRUE) burnin <- mod[[1]]$model_spec$burnin ngibbs <- burnin + mod[[1]]$model_spec$mcmc thin <- mod[[1]]$model_spec$thin require(coda) arr2mcmc <- function(x) { return(mcmc(as.data.frame(x), start=burnin+1 , end=ngibbs, thin=thin)) } mcmc_list_Deviance <- mcmc.list(lapply(lapply(mod,"[[","mcmc.Deviance"), arr2mcmc)) mcmc_list_alpha <- mcmc.list(lapply(lapply(mod,"[[","mcmc.alpha"), arr2mcmc)) mcmc_list_V_alpha <- mcmc.list(lapply(lapply(mod,"[[","mcmc.V_alpha"), arr2mcmc)) mcmc_list_param <- mcmc.list(lapply(lapply(mod,"[[","mcmc.sp"), arr2mcmc)) mcmc_list_lv <- mcmc.list(lapply(lapply(mod,"[[","mcmc.latent"), arr2mcmc)) mcmc_list_beta <- mcmc_list_param[,grep("beta",colnames(mcmc_list_param[[1]]))] mcmc_list_beta0 <- mcmc_list_beta[,grep("Intercept", colnames(mcmc_list_beta[[1]]))] mcmc_list_lambda <- mcmc.list( lapply(mcmc_list_param[, grep("lambda", colnames(mcmc_list_param[[1]]))], arr2mcmc)) # Compute Rhat psrf_alpha <- mean(gelman.diag(mcmc_list_alpha, multivariate=FALSE)$psrf[,2]) psrf_V_alpha <- gelman.diag(mcmc_list_V_alpha)$psrf[,2] psrf_beta0 <- mean(gelman.diag(mcmc_list_beta0)$psrf[,2]) psrf_beta <- mean(gelman.diag(mcmc_list_beta[,grep("Intercept", colnames(mcmc_list_beta[[1]]), invert=TRUE)])$psrf[,2]) psrf_lambda <- mean(gelman.diag(mcmc_list_lambda, multivariate=FALSE)$psrf[,2], na.rm=TRUE) psrf_lv <- mean(gelman.diag(mcmc_list_lv, multivariate=FALSE)$psrf[,2]) Rhat <- data.frame(Rhat=c(psrf_alpha, psrf_V_alpha, psrf_beta0, psrf_beta, psrf_lambda, psrf_lv), Variable=c("alpha", "Valpha", "beta0", "beta", "lambda", "W")) # Barplot library(ggplot2) ggplot2::ggplot(Rhat, aes(x=Variable, y=Rhat)) + ggtitle("Averages of Rhat obtained with jSDM for each type of parameter") + theme(plot.title = element_text(hjust = 0.5, size=15)) + geom_bar(fill="skyblue", stat = "identity") + geom_text(aes(label=round(Rhat,2)), vjust=0, hjust=-0.1) + geom_hline(yintercept=1, color='red') + coord_flip() #= Parameter estimates nchains <- length(mod) ## beta_j pdf(file=file.path(tempdir(), "Posteriors_species_effect_jSDM_probit.pdf")) plot(mcmc_list_param) dev.off() ## Latent variables pdf(file=file.path(tempdir(), "Posteriors_latent_variables_jSDM_probit.pdf")) plot(mcmc_list_lv) dev.off() ## Random site effect and its variance pdf(file=file.path(tempdir(), "Posteriors_site_effect_jSDM_probit.pdf")) plot(mcmc_list_V_alpha) plot(mcmc_list_alpha) dev.off() ## Predictive posterior mean for each observation # Species effects beta and factor loadings lambda param <- list() for (i in 1:nchains){ param[[i]] <- matrix(unlist(lapply(mod[[i]]$mcmc.sp,colMeans)), nrow=nsp, byrow=TRUE) } par(mfrow=c(1,1)) for (i in 1:nchains){ if(i==1){ plot(t(beta.target), param[[i]][,1:np], main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else{ points(t(beta.target), param[[i]][,1:np], col=i) } } par(mfrow=c(1,2)) for(l in 1:n_latent){ for (i in 1:nchains){ if (i==1){ plot(t(lambda.target)[,l], param[[i]][,np+l], main=paste0("factor loadings lambda_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else { points(t(lambda.target)[,l], param[[i]][,np+l], col=i) } } } ## W latent variables mean_W <- list() for (i in 1:nchains){ mean_W[[i]] <- sapply(mod[[i]]$mcmc.latent,colMeans) } par(mfrow=c(1,2)) for (l in 1:n_latent) { for (i in 1:nchains){ if (i==1){ plot(W[,l], mean_W[[i]][,l], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else{ points(W[,l], mean_W[[i]][,l], col=i) } } } #= W.lambda par(mfrow=c(1,2)) for (i in 1:nchains){ if (i==1){ plot(W%*%lambda.target, mean_W[[i]]%*%t(param[[i]][,(np+1):(np+n_latent)]), main = "W.lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1, col='red') } else{ points(W%*%lambda.target, mean_W[[i]]%*%t(param[[i]][,(np+1):(np+n_latent)]), col=i) } } # Site effect alpha et V_alpha plot(alpha.target,colMeans(mod[[1]]$mcmc.alpha), xlab="obs", ylab="fitted", main="Random site effect alpha") abline(a=0,b=1, col='red') points(V_alpha.target, mean(mod[[1]]$mcmc.V_alpha), pch=18, cex=2) legend("bottomright", legend=c("V_alpha"), pch =18, pt.cex=1.5) for (i in 2:nchains){ points(alpha.target, colMeans(mod[[i]]$mcmc.alpha), col=i) points(V_alpha.target, mean(mod[[i]]$mcmc.V_alpha), pch=18, col=i, cex=2) } #= Predictions ## Occurence probabilities plot(pnorm(probit_theta), mod[[1]]$theta_latent, main="theta",xlab="obs",ylab="fitted") for (i in 2:nchains){ points(pnorm(probit_theta), mod[[i]]$theta_latent, col=i) } abline(a=0,b=1, col='red') ## probit(theta) plot(probit_theta, mod[[1]]$probit_theta_latent, main="probit(theta)",xlab="obs",ylab="fitted") for (i in 2:nchains){ points(probit_theta, mod[[i]]$probit_theta_latent, col=i) } abline(a=0,b=1, col='red') ## Deviance plot(mcmc_list_Deviance) par(oldpar)
The jSDM_gaussian
function performs a linear regression in a Bayesian framework.
The function calls a Gibbs sampler written in 'C++' code which uses conjugate priors to estimate the conditional posterior distribution of model's parameters.
jSDM_gaussian( burnin = 5000, mcmc = 10000, thin = 10, response_data, site_formula, trait_data = NULL, trait_formula = NULL, site_data, n_latent = 0, site_effect = "none", lambda_start = 0, W_start = 0, beta_start = 0, alpha_start = 0, gamma_start = 0, V_alpha = 1, V_start = 1, mu_beta = 0, V_beta = 10, mu_lambda = 0, V_lambda = 10, mu_gamma = 0, V_gamma = 10, shape_Valpha = 0.5, rate_Valpha = 5e-04, shape_V = 0.5, rate_V = 5e-04, seed = 1234, verbose = 1 )
jSDM_gaussian( burnin = 5000, mcmc = 10000, thin = 10, response_data, site_formula, trait_data = NULL, trait_formula = NULL, site_data, n_latent = 0, site_effect = "none", lambda_start = 0, W_start = 0, beta_start = 0, alpha_start = 0, gamma_start = 0, V_alpha = 1, V_start = 1, mu_beta = 0, V_beta = 10, mu_lambda = 0, V_lambda = 10, mu_gamma = 0, V_gamma = 10, shape_Valpha = 0.5, rate_Valpha = 5e-04, shape_V = 0.5, rate_V = 5e-04, seed = 1234, verbose = 1 )
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to |
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
response_data |
A matrix |
site_formula |
A one-sided formula of the form '~x1+...+xp' specifying the explanatory variables for the suitability process of the model,
used to form the design matrix |
trait_data |
A data frame containing the species traits which can be included as part of the model. Default to |
trait_formula |
A one-sided formula of the form '~ t1 + ... + tk + x1:t1 + ... + xp:tk' specifying the interactions between the environmental variables and the species traits to be considered in the model,
used to form the trait design matrix |
site_data |
A data frame containing the model's explanatory variables by site. |
n_latent |
An integer which specifies the number of latent variables to generate. Defaults to |
site_effect |
A string indicating whether row effects are included as fixed effects ( |
lambda_start |
Starting values for |
W_start |
Starting values for latent variables must be either a scalar or a |
beta_start |
Starting values for |
alpha_start |
Starting values for random site effect parameters must be either a scalar or a |
gamma_start |
Starting values for |
V_alpha |
Starting value for variance of random site effect if |
V_start |
Starting value for the variance of residuals or over dispersion term. Must be a strictly positive scalar. |
mu_beta |
Means of the Normal priors for the |
V_beta |
Variances of the Normal priors for the |
mu_lambda |
Means of the Normal priors for the |
V_lambda |
Variances of the Normal priors for the |
mu_gamma |
Means of the Normal priors for the |
V_gamma |
Variances of the Normal priors for the |
shape_Valpha |
Shape parameter of the Inverse-Gamma prior for the random site effect variance |
rate_Valpha |
Rate parameter of the Inverse-Gamma prior for the random site effect variance |
shape_V |
Shape parameter of the Inverse-Gamma prior for the variance of residuals |
rate_V |
Rate parameter of the Inverse-Gamma prior for the variance of residuals |
seed |
The seed for the random number generator. Default to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
We model an ecological process where the continuous data about the species
and the site
is explained by habitat suitability.
Ecological process:
where
if n_latent=0 and site_effect="none" |
|
if n_latent>0 and site_effect="none" |
|
if n_latent=0 and site_effect="random" |
and |
if n_latent>0 and site_effect="fixed" |
|
if n_latent=0 and site_effect="fixed" |
|
if n_latent>0 and site_effect="random" |
and |
In the absence of data on species traits (trait_data=NULL
), the effect of species :
;
follows the same a priori Gaussian distribution such that
,
for each species.
If species traits data are provided, the effect of species :
;
follows an a priori Gaussian distribution such that
,
where
, takes different values for each species.
We assume that as prior distribution.
We define the matrix such as :
|
|
... | |
... | |
||
__________ | ________ | ________ | ________ | ________ | ________ | ||
| |
|
|
... | |
... | |
{ effect of |
intercept | environmental | ||||||
variables | |||||||
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
average | |||||||
trait effect | interaction | traits | environment | ||||
An object of class "jSDM"
acting like a list including :
mcmc.alpha |
An mcmc object that contains the posterior samples for site effects |
mcmc.V_alpha |
An mcmc object that contains the posterior samples for variance of random site effect, not returned if |
mcmc.V |
An mcmc object that contains the posterior samples for variance of residuals. |
mcmc.latent |
A list by latent variable of mcmc objects that contains the posterior samples for latent variables |
mcmc.sp |
A list by species of mcmc objects that contains the posterior samples for species effects |
mcmc.gamma |
A list by covariates of mcmc objects that contains the posterior samples for |
mcmc.Deviance |
The posterior sample of the deviance ( |
Z_latent |
Predictive posterior mean of the latent variable Z. |
probit_theta_latent |
Predictive posterior mean of the probability to each species to be present on each site, transformed by probit link function. |
theta_latent |
Predictive posterior mean of the probability to each species to be present on each site. |
model_spec |
Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin. |
The mcmc.
objects can be summarized by functions provided by the coda
package.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Chib, S. and Greenberg, E. (1998) Analysis of multivariate probit models. Biometrika, 85, 347-361.
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.
plot.mcmc
, summary.mcmc
jSDM_binomial_logit
jSDM_poisson_log
jSDM_binomial_probit_sp_constrained
jSDM_binomial_probit
#====================================== # jSDM_gaussian() # Example with simulated data #==================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 100 #= Set seed for repeatability seed <- 1234 set.seed(seed) #= Number of species nsp <- 20 #= Number of latent variables n_latent <- 2 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Fixed species effect beta beta.target <- t(matrix(runif(nsp*np,-1,1), byrow=TRUE, nrow=nsp)) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -1, 1), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] diag(lambda.target) <- runif(n_latent, 0, 2) #= Variance of random site effect V_alpha.target <- 0.2 #= Random site effect alpha alpha.target <- rnorm(nsite,0 , sqrt(V_alpha.target)) # Simulation of response data theta.target <- X%*%beta.target + W%*%lambda.target + alpha.target V.target <- 0.2 Y <- matrix(rnorm(nsite*nsp, theta.target, sqrt(V.target)), nrow=nsite) #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_gaussian(# Iteration burnin=200, mcmc=200, thin=1, # Response variable response_data=Y, # Explanatory variables site_formula=~x1+x2, site_data = X, n_latent=2, site_effect="random", # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, V_start=1 , # Priors shape_Valpha=0.5, rate_Valpha=0.0005, shape_V=0.5, rate_V=0.0005, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, seed=1234, verbose=1) # =================================================== # Result analysis # =================================================== #========== #== Outputs #= Parameter estimates oldpar <- par(no.readonly = TRUE) ## beta_j mean_beta <- matrix(0,nsp,ncol(X)) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]] [,1:ncol(X)], 2, mean) for (p in 1:ncol(X)){ coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames(mod$mcmc.sp[[j]])[p],", species : ",j)) abline(v=beta.target[p,j],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[l,j],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(t(beta.target), mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(t(lambda.target), mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Variance of residuals par(mfrow=c(1,2)) coda::traceplot(mod$mcmc.V) coda::densplot(mod$mcmc.V, main="Variance of residuals") abline(v=V.target, col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions par(mfrow=c(1,1)) plot(Y, mod$Y_pred, main="Response variable",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') par(oldpar)
#====================================== # jSDM_gaussian() # Example with simulated data #==================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 100 #= Set seed for repeatability seed <- 1234 set.seed(seed) #= Number of species nsp <- 20 #= Number of latent variables n_latent <- 2 #= Ecological process (suitability) x1 <- rnorm(nsite,0,1) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) #= Latent variables W W <- matrix(rnorm(nsite*n_latent,0,1), nsite, n_latent) #= Fixed species effect beta beta.target <- t(matrix(runif(nsp*np,-1,1), byrow=TRUE, nrow=nsp)) #= Factor loading lambda lambda.target <- matrix(0, n_latent, nsp) mat <- t(matrix(runif(nsp*n_latent, -1, 1), byrow=TRUE, nrow=nsp)) lambda.target[upper.tri(mat, diag=TRUE)] <- mat[upper.tri(mat, diag=TRUE)] diag(lambda.target) <- runif(n_latent, 0, 2) #= Variance of random site effect V_alpha.target <- 0.2 #= Random site effect alpha alpha.target <- rnorm(nsite,0 , sqrt(V_alpha.target)) # Simulation of response data theta.target <- X%*%beta.target + W%*%lambda.target + alpha.target V.target <- 0.2 Y <- matrix(rnorm(nsite*nsp, theta.target, sqrt(V.target)), nrow=nsite) #================================== #== Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_gaussian(# Iteration burnin=200, mcmc=200, thin=1, # Response variable response_data=Y, # Explanatory variables site_formula=~x1+x2, site_data = X, n_latent=2, site_effect="random", # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, V_start=1 , # Priors shape_Valpha=0.5, rate_Valpha=0.0005, shape_V=0.5, rate_V=0.0005, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, seed=1234, verbose=1) # =================================================== # Result analysis # =================================================== #========== #== Outputs #= Parameter estimates oldpar <- par(no.readonly = TRUE) ## beta_j mean_beta <- matrix(0,nsp,ncol(X)) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_probit.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]] [,1:ncol(X)], 2, mean) for (p in 1:ncol(X)){ coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames(mod$mcmc.sp[[j]])[p],", species : ",j)) abline(v=beta.target[p,j],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_probit.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[l,j],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(t(beta.target), mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(t(lambda.target), mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Variance of residuals par(mfrow=c(1,2)) coda::traceplot(mod$mcmc.V) coda::densplot(mod$mcmc.V, main="Variance of residuals") abline(v=V.target, col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions par(mfrow=c(1,1)) plot(Y, mod$Y_pred, main="Response variable",xlab="obs",ylab="fitted") abline(a=0,b=1,col='red') par(oldpar)
The jSDM_poisson_log
function performs a Poisson regression with log link function in a Bayesian framework.
The function calls a Gibbs sampler written in 'C++' code which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution of model's parameters.
jSDM_poisson_log( burnin = 5000, mcmc = 10000, thin = 10, count_data, site_data, site_formula, trait_data = NULL, trait_formula = NULL, n_latent = 0, site_effect = "none", beta_start = 0, gamma_start = 0, lambda_start = 0, W_start = 0, alpha_start = 0, V_alpha = 1, shape_Valpha = 0.5, rate_Valpha = 5e-04, mu_beta = 0, V_beta = 10, mu_gamma = 0, V_gamma = 10, mu_lambda = 0, V_lambda = 10, ropt = 0.44, seed = 1234, verbose = 1 )
jSDM_poisson_log( burnin = 5000, mcmc = 10000, thin = 10, count_data, site_data, site_formula, trait_data = NULL, trait_formula = NULL, n_latent = 0, site_effect = "none", beta_start = 0, gamma_start = 0, lambda_start = 0, W_start = 0, alpha_start = 0, V_alpha = 1, shape_Valpha = 0.5, rate_Valpha = 5e-04, mu_beta = 0, V_beta = 10, mu_gamma = 0, V_gamma = 10, mu_lambda = 0, V_lambda = 10, ropt = 0.44, seed = 1234, verbose = 1 )
burnin |
The number of burnin iterations for the sampler. |
mcmc |
The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to |
thin |
The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value. |
count_data |
A matrix |
site_data |
A data frame containing the model's explanatory variables by site. |
site_formula |
A one-sided formula of the form '~x1+...+xp' specifying the explanatory variables for the suitability process of the model, |
trait_data |
A data frame containing the species traits which can be included as part of the model. |
trait_formula |
A one-sided formula of the form '~ t1 + ... + tk + x1:t1 + ... + xp:tk' specifying the interactions between the environmental variables and the species traits to be considered in the model, |
n_latent |
An integer which specifies the number of latent variables to generate. Defaults to |
site_effect |
A string indicating whether row effects are included as fixed effects ( |
beta_start |
Starting values for |
gamma_start |
Starting values for |
lambda_start |
Starting values for |
W_start |
Starting values for latent variables must be either a scalar or a |
alpha_start |
Starting values for random site effect parameters must be either a scalar or a |
V_alpha |
Starting value for variance of random site effect if |
shape_Valpha |
Shape parameter of the Inverse-Gamma prior for the random site effect variance |
rate_Valpha |
Rate parameter of the Inverse-Gamma prior for the random site effect variance |
mu_beta |
Means of the Normal priors for the |
V_beta |
Variances of the Normal priors for the |
mu_gamma |
Means of the Normal priors for the |
V_gamma |
Variances of the Normal priors for the |
mu_lambda |
Means of the Normal priors for the |
V_lambda |
Variances of the Normal priors for the |
ropt |
Target acceptance rate for the adaptive Metropolis algorithm. Default to 0.44. |
seed |
The seed for the random number generator. Default to 1234. |
verbose |
A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler. |
We model an ecological process where the presence or absence of species on site
is explained by habitat suitability.
Ecological process :
where
if n_latent=0 and site_effect="none" |
log |
if n_latent>0 and site_effect="none" |
log |
if n_latent=0 and site_effect="fixed" |
log |
if n_latent>0 and site_effect="fixed" |
log |
if n_latent=0 and site_effect="random" |
log and |
if n_latent>0 and site_effect="random" |
log and |
In the absence of data on species traits (trait_data=NULL
), the effect of species :
;
follows the same a priori Gaussian distribution such that
,
for each species.
If species traits data are provided, the effect of species :
;
follows an a priori Gaussian distribution such that
,
where
, takes different values for each species.
We assume that as prior distribution.
We define the matrix such as :
|
|
... | |
... | |
||
__________ | ________ | ________ | ________ | ________ | ________ | ||
| |
|
|
... | |
... | |
{ effect of |
| | intercept | environmental | |||||
| | variables | ||||||
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
... | | ... | ... | ... | ... | ... | ... | |
| |
|
|
... | |
... | |
|
average | |||||||
trait effect | interaction | traits | environment | ||||
An object of class "jSDM"
acting like a list including :
mcmc.alpha |
An mcmc object that contains the posterior samples for site effects |
mcmc.V_alpha |
An mcmc object that contains the posterior samples for variance of random site effect, not returned if |
mcmc.latent |
A list by latent variable of mcmc objects that contains the posterior samples for latent variables |
mcmc.sp |
A list by species of mcmc objects that contains the posterior samples for species effects |
mcmc.gamma |
A list by covariates of mcmc objects that contains the posterior samples for |
mcmc.Deviance |
The posterior sample of the deviance ( |
log_theta_latent |
Predictive posterior mean of the probability to each species to be present on each site, transformed by log link function. |
theta_latent |
Predictive posterior mean of the probability to each species to be present on each site. |
model_spec |
Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin. |
The mcmc.
objects can be summarized by functions provided by the coda
package.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.
Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.
Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.
plot.mcmc
, summary.mcmc
jSDM_binomial_probit
jSDM_binomial_logit
#============================================== # jSDM_poisson_log() # Example with simulated data #============================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 50 #= Number of species nsp <- 10 #= Set seed for repeatability seed <- 1234 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) set.seed(3*seed) W <- cbind(rnorm(nsite,0,1),rnorm(nsite,0,1)) n_latent <- ncol(W) l.zero <- 0 l.diag <- runif(2,0,1) l.other <- runif(nsp*2-3,-1,1) lambda.target <- matrix(c(l.diag[1],l.zero,l.other[1], l.diag[2],l.other[-1]), byrow=TRUE, nrow=nsp) beta.target <- matrix(runif(nsp*np,-1,1), byrow=TRUE, nrow=nsp) V_alpha.target <- 0.5 alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) log.theta <- X %*% t(beta.target) + W %*% t(lambda.target) + alpha.target theta <- exp(log.theta) Y <- apply(theta, 2, rpois, n=nsite) #= Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_poisson_log(# Chains burnin=200, mcmc=200, thin=1, # Response variable count_data=Y, # Explanatory variables site_formula=~x1+x2, site_data=X, n_latent=n_latent, site_effect="random", # Starting values beta_start=0, lambda_start=0, W_start=0, alpha_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, ropt=0.44, verbose=1) #========== #== Outputs oldpar <- par(no.readonly = TRUE) #= Parameter estimates ## beta_j mean_beta <- matrix(0,nsp,np) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_log.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]][,1:ncol(X)], 2, mean) for (p in 1:ncol(X)) { coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames( mod$mcmc.sp[[j]])[p], ", species : ",j)) abline(v=beta.target[j,p],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_log.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[j,l],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(beta.target, mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(lambda.target, mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions par(mfrow=c(1,2)) plot(log.theta, mod$log_theta_latent, main="log(theta)", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") plot(theta, mod$theta_latent, main="Expected abundance theta", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") par(oldpar)
#============================================== # jSDM_poisson_log() # Example with simulated data #============================================== #================= #== Load libraries library(jSDM) #================== #== Data simulation #= Number of sites nsite <- 50 #= Number of species nsp <- 10 #= Set seed for repeatability seed <- 1234 #= Ecological process (suitability) set.seed(seed) x1 <- rnorm(nsite,0,1) set.seed(2*seed) x2 <- rnorm(nsite,0,1) X <- cbind(rep(1,nsite),x1,x2) np <- ncol(X) set.seed(3*seed) W <- cbind(rnorm(nsite,0,1),rnorm(nsite,0,1)) n_latent <- ncol(W) l.zero <- 0 l.diag <- runif(2,0,1) l.other <- runif(nsp*2-3,-1,1) lambda.target <- matrix(c(l.diag[1],l.zero,l.other[1], l.diag[2],l.other[-1]), byrow=TRUE, nrow=nsp) beta.target <- matrix(runif(nsp*np,-1,1), byrow=TRUE, nrow=nsp) V_alpha.target <- 0.5 alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target)) log.theta <- X %*% t(beta.target) + W %*% t(lambda.target) + alpha.target theta <- exp(log.theta) Y <- apply(theta, 2, rpois, n=nsite) #= Site-occupancy model # Increase number of iterations (burnin and mcmc) to get convergence mod <- jSDM_poisson_log(# Chains burnin=200, mcmc=200, thin=1, # Response variable count_data=Y, # Explanatory variables site_formula=~x1+x2, site_data=X, n_latent=n_latent, site_effect="random", # Starting values beta_start=0, lambda_start=0, W_start=0, alpha_start=0, V_alpha=1, # Priors shape_Valpha=0.5, rate_Valpha=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, ropt=0.44, verbose=1) #========== #== Outputs oldpar <- par(no.readonly = TRUE) #= Parameter estimates ## beta_j mean_beta <- matrix(0,nsp,np) pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_log.pdf")) par(mfrow=c(ncol(X),2)) for (j in 1:nsp) { mean_beta[j,] <- apply(mod$mcmc.sp[[j]][,1:ncol(X)], 2, mean) for (p in 1:ncol(X)) { coda::traceplot(mod$mcmc.sp[[j]][,p]) coda::densplot(mod$mcmc.sp[[j]][,p], main = paste(colnames( mod$mcmc.sp[[j]])[p], ", species : ",j)) abline(v=beta.target[j,p],col='red') } } dev.off() ## lambda_j mean_lambda <- matrix(0,nsp,n_latent) pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_log.pdf")) par(mfrow=c(n_latent*2,2)) for (j in 1:nsp) { mean_lambda[j,] <- apply(mod$mcmc.sp[[j]] [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean) for (l in 1:n_latent) { coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l]) coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l], main=paste(colnames(mod$mcmc.sp[[j]]) [ncol(X)+l],", species : ",j)) abline(v=lambda.target[j,l],col='red') } } dev.off() # Species effects beta and factor loadings lambda par(mfrow=c(1,2)) plot(beta.target, mean_beta, main="species effect beta", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') plot(lambda.target, mean_lambda, main="factor loadings lambda", xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') ## W latent variables par(mfrow=c(1,2)) for (l in 1:n_latent) { plot(W[,l], summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"], main = paste0("Latent variable W_", l), xlab ="obs", ylab ="fitted") abline(a=0,b=1,col='red') } ## alpha par(mfrow=c(1,3)) plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"], xlab ="obs", ylab ="fitted", main="site effect alpha") abline(a=0,b=1,col='red') ## Valpha coda::traceplot(mod$mcmc.V_alpha) coda::densplot(mod$mcmc.V_alpha) abline(v=V_alpha.target,col='red') ## Deviance summary(mod$mcmc.Deviance) plot(mod$mcmc.Deviance) #= Predictions par(mfrow=c(1,2)) plot(log.theta, mod$log_theta_latent, main="log(theta)", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") plot(theta, mod$theta_latent, main="Expected abundance theta", xlab="obs", ylab="fitted") abline(a=0 ,b=1, col="red") par(oldpar)
Compute generalized logit function.
logit(x, min = 0, max = 1)
logit(x, min = 0, max = 1)
x |
value(s) to be transformed |
min |
Lower end of logit interval |
max |
Upper end of logit interval |
The generalized logit function takes values on and transforms them to span
it is defined as:
y Transformed value(s).
Gregory R. Warnes <[email protected]>
x <- seq(0,10, by=0.25) xt <- jSDM::logit(x, min=0, max=10) cbind(x,xt) y <- jSDM::inv_logit(xt, min=0, max=10) cbind(x,xt,y)
x <- seq(0,10, by=0.25) xt <- jSDM::logit(x, min=0, max=10) cbind(x,xt) y <- jSDM::inv_logit(xt, min=0, max=10) cbind(x,xt,y)
Dataset compiled from the national forest inventories carried out on 753 sites on the island of Madagascar, listing the presence or absence of 555 plant species on each of these sites between 1994 and 1996. We use these forest inventories to calculate a matrix indicating the presence by a 1 and the absence by a 0 of the species at each site by removing observations for which the species is not identified. This presence-absence matrix therefore records the occurrences of 483 species at 751 sites.
madagascar
is a data frame with 751 rows corresponding to the inventory sites and 483 columns corresponding to the species whose presence or absence has been recorded on the sites.
sp_
1 to 483 indicate by a 0 the absence of the species on one site and by a 1 its presence
site
"1" to "753" inventory sites identifiers.
data(madagascar, package="jSDM") head(madagascar)
data(madagascar, package="jSDM") head(madagascar)
This example data set is composed of 70 cores of mostly Sphagnum mosses collected on the territory of the Station de biologie des Laurentides of University of Montreal, Quebec, Canada in June 1989.
The whole sampling area was 2.5 m x 10 m in size and thirty-five taxa were recognized as species, though many were not given a species name, owing to the incomplete stage of systematic knowledge of the North American Oribatid fauna.
The data set comprises the abundances of 35 morphospecies, 5 substrate and micritopographic variables, and the x-y Cartesian coordinates of the 70 sampling sites.
See Borcard et al. (1992, 1994) for details.
data("mites")
data("mites")
A data frame with 70 observations on the following 42 variables.
Abundance of 35 Oribatid mites morphospecies named :
Brachy
a vector of integers
PHTH
a vector of integers
HPAV
a vector of integers
RARD
a vector of integers
SSTR
a vector of integers
Protopl
a vector of integers
MEGR
a vector of integers
MPRO
a vector of integers
TVIE
a vector of integers
HMIN
a vector of integers
HMIN2
a vector of integers
NPRA
a vector of integers
TVEL
a vector of integers
ONOV
a vector of integers
SUCT
a vector of integers
LCIL
a vector of integers
Oribatul1
a vector of integers
Ceratoz1
a vector of integers
PWIL
a vector of integers
Galumna1
a vector of integers
Steganacarus2
a vector of integers
HRUF
a vector of integers
Trhypochth1
a vector of integers
PPEL
a vector of integers
NCOR
a vector of integers
SLAT
a vector of integers
FSET
a vector of integers
Lepidozetes
a vector of integers
Eupelops
a vector of integers
Minigalumna
a vector of integers
LRUG
a vector of integers
PLAG2
a vector of integers
Ceratoz3
a vector of integers
Oppia.minus
a vector of integers
Trimalaco2
a vector of integers
5 covariates collected on the 70 sites and their coordinates :
substrate
a categorical vector indicating substrate type using a 7-level unordered factor : sph1
, sph2
, sph3
, sph4
, litter
, peat
and inter
for interface.
shrubs
a categorical vector indicating shrub density using a 3-level ordered factor : None
, Few
and Many
topo
a categorical vector indicating microtopography using a 2-level factor: blanket
or hummock
density
a numeric vector indicating the substrate density (g/L)
water
a numeric vector indicating the water content of the substrate (g/L)
x
a numeric vector indicating first coordinates of sampling sites
y
a numeric vector indicating second coordinates of sampling sites
Oribatid mites (Acari: Oribatida) are a very diversified group of small (0.2-1.2 mm) soil-dwelling, mostly microphytophagous and detritivorous arthropods. A well aerated soil or a complex substrate like Sphagnum mosses present in bogs and wet forests can harbour up to several hundred thousand individuals per square metre.
Local assemblages are sometimes composed of over a hundred species, including many rare ones. This diversity makes oribatid mites an interesting target group to study community-environment relationships at very local scales.
Pierre Legendre
Borcard, D.; Legendre, P. and Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology 73: 1045-1055.
Borcard, D. and Legendre, P. (1994) Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1: 37-61.
Borcard, D. and Legendre, P. (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51-68.
data(mites, package="jSDM") head(mites)
data(mites, package="jSDM") head(mites)
Presence or absence at 167 sites of 16 species that constitute the aquatic faunal community studied, 13 covariates collected at these sites and their coordinates.
data("mosquitos")
data("mosquitos")
A data frame with 167 observations on the following 31 variables :
16 aquatic species including larvae of four mosquito species (all potential vectors of human disease), which presence on sites is indicated by a 1 and absence by a 0 :
Culex_pipiens_sl
a binary vector (mosquito species)
Culex_modestus
a binary vector (mosquito species)
Culiseta_annulata
a binary vector (mosquito species)
Anopheles_maculipennis_sl
a binary vector (mosquito species)
waterboatmen__Corixidae
a binary vector
diving_beetles__Dysticidae
a binary vector
damselflies__Zygoptera
a binary vector
swimming_beetles__Haliplidae
a binary vector
opossum_shrimps__Mysidae
a binary vector
ditch_shrimp__Gammarus
a binary vector
beetle_larvae__Coleoptera
a binary vector
dragonflies__Anisoptera
a binary vector
mayflies__Ephemeroptera
a binary vector
newts__Pleurodelinae
a binary vector
fish
a binary vector
saucer_bugs__Ilyocoris
a binary vector
13 covariates collected on the 167 sites and their coordinates :
depth__cm
a numeric vector corresponding to the water depth in cm recorded as the mean of the depth at the edge and the centre of each dip site
temperature__C
a numeric vector corresponding to the temperature in °C
oxidation_reduction_potential__Mv
a numeric vector corresponding to the redox potential of the water in millivolts (mV)
salinity__ppt
a numeric vector corresponding to the salinity of the water in parts per thousand (ppt)
High-resolution digital photographs were taken of vegetation at the edge and centre dip points and the presence or absence of different vegetation types at each dipsite was determined from these photographs using field guides :
water_crowfoot__Ranunculus
a binary vector indicating presence on sites by a 1 and absence by a 0 of the plant species Ranunculus aquatilis which common name is water-crowfoot
rushes__Juncus_or_Scirpus
a binary vector indicating presence on sites by a 1 and absence by a 0 of rushes from the Juncus or Scirpus genus
filamentous_algae
a binary vector indicating presence on sites by a 1 and absence by a 0 of filamentous algae
emergent_grass
a binary vector indicating presence on sites by a 1 and absence by a 0 of emergent grass
ivy_leafed_duckweed__Lemna_trisulca
a binary vector indicating presence on sites by a 1 and absence by a 0 of ivy leafed duckweed of species Lemna trisulca
bulrushes__Typha
a binary vector indicating presence on sites by a 1 and absence by a 0 of bulrushes from the Typha genus
reeds_Phragmites
a binary vector indicating presence on sites by a 1 and absence by a 0 of reeds from the Phragmites genus
marestail__Hippuris
a binary vector indicating presence on sites by a 1 and absence by a 0 of plants from the Hippuris genus known as mare's-tail
common_duckweed__Lemna_minor
a binary vector indicating presence on sites by a 1 and absence by a 0 of common duckweed of species Lemna minor
x
a numeric vector of first coordinates corresponding to each site
y
a numeric vector of second coordinates corresponding to each site
Wilkinson, D. P.; Golding, N.; Guillera-Arroita, G.; Tingley, R. and McCarthy, M. A. (2018) A comparison of joint species distribution models for presence-absence data. Methods in Ecology and Evolution.
data(mosquitos, package="jSDM") head(mosquitos)
data(mosquitos, package="jSDM") head(mosquitos)
plot_associations plot species-species associations
plot_associations( R, radius = 5, main = NULL, cex.main = NULL, circleBreak = FALSE, top = 10L, occ = NULL, env_effect = NULL, cols_association = c("#FF0000", "#BF003F", "#7F007F", "#3F00BF", "#0000FF"), cols_occurrence = c("#BEBEBE", "#8E8E8E", "#5F5F5F", "#2F2F2F", "#000000"), cols_env_effect = c("#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E", "#E6AB02", "#A6761D", "#666666"), lwd_occurrence = 1, species_order = "abundance", species_indices = NULL )
plot_associations( R, radius = 5, main = NULL, cex.main = NULL, circleBreak = FALSE, top = 10L, occ = NULL, env_effect = NULL, cols_association = c("#FF0000", "#BF003F", "#7F007F", "#3F00BF", "#0000FF"), cols_occurrence = c("#BEBEBE", "#8E8E8E", "#5F5F5F", "#2F2F2F", "#000000"), cols_env_effect = c("#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E", "#E6AB02", "#A6761D", "#666666"), lwd_occurrence = 1, species_order = "abundance", species_indices = NULL )
R |
matrix of correlation |
||||||
radius |
circle's radius |
||||||
main |
title |
||||||
cex.main |
title's character size. NULL and NA are equivalent to 1.0. |
||||||
circleBreak |
circle break or not |
||||||
top |
number of top negative and positive associations to consider |
||||||
occ |
species occurence data |
||||||
env_effect |
environmental species effects |
||||||
cols_association |
color gradient for association lines |
||||||
cols_occurrence |
color gradient for species |
||||||
cols_env_effect |
color gradient for environmental effect |
||||||
lwd_occurrence |
lwd for occurrence lines |
||||||
species_order |
order species according to :
|
||||||
species_indices |
indices for sorting species |
After fitting the jSDM with latent variables, the fullspecies residual correlation matrix : with
and
can be derived from the covariance in the latent variables such as :
can be derived from the covariance in the latent variables such as :
, in the case of a regression with probit, logit or poisson link function and
|
|
if i=j |
|
else, |
this function represents the correlations computed from covariances :
.
No return value. Displays species-species associations.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Pichler M. and Hartig F. (2021) A new method for faster and more accurate inference of species associations from big community data.
Methods in Ecology and Evolution, 12, 2159-2173 doi:10.1111/2041-210X.13687.
jSDM-package
get_residual_cor
jSDM_binomial_probit
jSDM_binomial_probit_long_format
jSDM_binomial_probit_sp_constrained
jSDM_binomial_logit
jSDM_poisson_log
library(jSDM) # frogs data data(mites, package="jSDM") # Arranging data PA_mites <- mites[,1:35] # Normalized continuous variables Env_mites <- cbind(mites[,36:38], scale(mites[,39:40])) colnames(Env_mites) <- colnames(mites[,36:40]) Env_mites <- as.data.frame(Env_mites) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod <- jSDM_poisson_log(# Response variable count_data=PA_mites, # Explanatory variables site_formula = ~ water + topo + density, site_data = Env_mites, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, verbose=1) # Calcul of residual correlation between species R <- get_residual_cor(mod)$cor.mean plot_associations(R, circleBreak = TRUE, occ = PA_mites, species_order="abundance") # Average of MCMC samples of species enrironmental effect beta except the intercept env_effect <- t(sapply(mod$mcmc.sp, colMeans)[grep("beta_", colnames(mod$mcmc.sp[[1]]))[-1],]) colnames(env_effect) <- gsub("beta_", "", colnames(env_effect)) plot_associations(R, env_effect = env_effect, species_order="main env_effect")
library(jSDM) # frogs data data(mites, package="jSDM") # Arranging data PA_mites <- mites[,1:35] # Normalized continuous variables Env_mites <- cbind(mites[,36:38], scale(mites[,39:40])) colnames(Env_mites) <- colnames(mites[,36:40]) Env_mites <- as.data.frame(Env_mites) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod <- jSDM_poisson_log(# Response variable count_data=PA_mites, # Explanatory variables site_formula = ~ water + topo + density, site_data = Env_mites, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, verbose=1) # Calcul of residual correlation between species R <- get_residual_cor(mod)$cor.mean plot_associations(R, circleBreak = TRUE, occ = PA_mites, species_order="abundance") # Average of MCMC samples of species enrironmental effect beta except the intercept env_effect <- t(sapply(mod$mcmc.sp, colMeans)[grep("beta_", colnames(mod$mcmc.sp[[1]]))[-1],]) colnames(env_effect) <- gsub("beta_", "", colnames(env_effect)) plot_associations(R, env_effect = env_effect, species_order="main env_effect")
Plot the posterior mean estimator of residual correlation matrix reordered by first principal component using corrplot
function from the package of the same name.
plot_residual_cor( mod, prob = NULL, main = "Residual Correlation Matrix from LVM", cex.main = 1.5, diag = FALSE, type = "lower", method = "color", mar = c(1, 1, 3, 1), tl.srt = 45, tl.cex = 0.5, ... )
plot_residual_cor( mod, prob = NULL, main = "Residual Correlation Matrix from LVM", cex.main = 1.5, diag = FALSE, type = "lower", method = "color", mar = c(1, 1, 3, 1), tl.srt = 45, tl.cex = 0.5, ... )
mod |
An object of class |
prob |
A numeric scalar in the interval |
main |
Character, title of the graph. |
cex.main |
Numeric, title's size. |
diag |
Logical, whether display the correlation coefficients on the principal diagonal. |
type |
Character, "full" (default), "upper" or "lower", display full matrix, lower triangular or upper triangular matrix. |
method |
Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named "circle" (default), "square", "ellipse", "number", "pie", "shade" and "color". |
mar |
See |
tl.srt |
Numeric, for text label string rotation in degrees, see |
tl.cex |
Numeric, for the size of text label (variable names). |
... |
Further arguments passed to |
No return value. Displays a reordered correlation matrix.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
Taiyun Wei and Viliam Simko (2017). R package "corrplot": Visualization of a Correlation Matrix (Version 0.84)
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
corrplot
jSDM-package
jSDM_binomial_probit
jSDM_binomial_logit
jSDM_poisson_log
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod<-jSDM_binomial_probit(# Response variable presence_data = PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.1, rate=0.1, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, # Various seed=1234, verbose=1) # Representation of residual correlation between species plot_residual_cor(mod) plot_residual_cor(mod, prob=0.95)
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod<-jSDM_binomial_probit(# Response variable presence_data = PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.1, rate=0.1, mu_beta=0, V_beta=1, mu_lambda=0, V_lambda=1, # Various seed=1234, verbose=1) # Representation of residual correlation between species plot_residual_cor(mod) plot_residual_cor(mod, prob=0.95)
Prediction of species probabilities of occurrence from models fitted using the jSDM package
## S3 method for class 'jSDM' predict( object, newdata = NULL, Id_species, Id_sites, type = "mean", probs = c(0.025, 0.975), ... )
## S3 method for class 'jSDM' predict( object, newdata = NULL, Id_species, Id_sites, type = "mean", probs = c(0.025, 0.975), ... )
object |
An object of class |
|||||||||
newdata |
An optional data frame in which explanatory variables can be searched for prediction. If omitted, the adjusted values are used. |
|||||||||
Id_species |
An vector of character or integer indicating for which species the probabilities of presence on chosen sites will be predicted. |
|||||||||
Id_sites |
An vector of integer indicating for which sites the probabilities of presence of specified species will be predicted. |
|||||||||
type |
Type of prediction. Can be :
Using |
|||||||||
probs |
Numeric vector of probabilities with values in [0,1], |
|||||||||
... |
Further arguments passed to or from other methods. |
Return a vector for the predictive posterior mean when type="mean"
, a data-frame with the mean and quantiles when type="quantile"
or an mcmc
object (see coda
package) with posterior distribution for each prediction when type="posterior"
.
Ghislain Vieilledent <[email protected]>
Jeanne Clément <[email protected]>
jSDM-package
jSDM_gaussian
jSDM_binomial_logit
jSDM_binomial_probit
jSDM_poisson_log
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod<-jSDM_binomial_probit(# Response variable presence_data=PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, verbose=1) # Select site and species for predictions ## 30 sites Id_sites <- sample.int(nrow(PA_frogs), 30) ## 5 species Id_species <- sample(colnames(PA_frogs), 5) # Predictions theta_pred <- predict(mod, Id_species=Id_species, Id_sites=Id_sites, type="mean") hist(theta_pred, main="Predicted theta with simulated covariates")
library(jSDM) # frogs data data(frogs, package="jSDM") # Arranging data PA_frogs <- frogs[,4:12] # Normalized continuous variables Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3])) colnames(Env_frogs) <- colnames(frogs[,1:3]) # Parameter inference # Increase the number of iterations to reach MCMC convergence mod<-jSDM_binomial_probit(# Response variable presence_data=PA_frogs, # Explanatory variables site_formula = ~., site_data = Env_frogs, n_latent=2, site_effect="random", # Chains burnin=100, mcmc=100, thin=1, # Starting values alpha_start=0, beta_start=0, lambda_start=0, W_start=0, V_alpha=1, # Priors shape=0.5, rate=0.0005, mu_beta=0, V_beta=10, mu_lambda=0, V_lambda=10, # Various seed=1234, verbose=1) # Select site and species for predictions ## 30 sites Id_sites <- sample.int(nrow(PA_frogs), 30) ## 5 species Id_species <- sample(colnames(PA_frogs), 5) # Predictions theta_pred <- predict(mod, Id_species=Id_species, Id_sites=Id_sites, type="mean") hist(theta_pred, main="Predicted theta with simulated covariates")