Package: gllvm 2.0
gllvm: Generalized Linear Latent Variable Models
Analysis of multivariate data using generalized linear latent variable models (gllvm). Estimation is performed using either the Laplace method, variational approximations, or extended variational approximations, implemented via TMB (Kristensen et al. (2016), <doi:10.18637/jss.v070.i05>).
Authors:
gllvm_2.0.tar.gz
gllvm_2.0.tar.gz(r-4.5-noble)gllvm_2.0.tar.gz(r-4.4-noble)
gllvm_2.0.tgz(r-4.4-emscripten)gllvm_2.0.tgz(r-4.3-emscripten)
gllvm.pdf |gllvm.html✨
gllvm/json (API)
NEWS
# Install 'gllvm' in R: |
install.packages('gllvm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jenniniku/gllvm/issues
- Skabbholmen - Skabbholmen island data
- beetle - Ground beetle assemblages
- eSpider - Hunting spider data
- fungi - Wood-decaying fungi data
- kelpforest - Kelp Forest community Dynamics: Cover of sessile organisms, Uniform Point Contact
- microbialdata - Microbial community data
Last updated 1 days agofrom:9c0fd00ac8. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 27 2024 |
R-4.5-linux-x86_64 | OK | Nov 27 2024 |
Exports:AICcAICc.gllvmcoefplotcoefplot.gllvmconfint.gllvmgetEnvironCorgetEnvironCor.gllvmgetEnvironCovgetEnvironCov.gllvmgetLoadingsgetLoadings.gllvmgetLVgetLV.gllvmgetPredictErrgetPredictErr.gllvmgetResidualCorgetResidualCor.gllvmgetResidualCovgetResidualCov.gllvmgllvmlogLik.gllvmnobs.gllvmoptimaoptima.gllvmordiplotordiplot.gllvmphyloplotphyloplot.gllvmplotVarPartitioningplotVPpredict.gllvmpredictLVspredictLVs.gllvmprint.summary.gllvmrandomCoefplotrandomCoefplot.gllvmsese.gllvmsimulatesimulate.gllvmtolerancestolerances.gllvmvarPartitioningvarPartitioning.gllvmvcov.gllvmVP
Dependencies:alabamafishModlatticeMASSMatrixmgcvnlmenloptrnumDerivRcppRcppEigenstatmodTMB
Analysing high-dimensional microbial community data using gllvm
Rendered fromvignette2.rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2019-08-23
Analysing multivariate abundance data using gllvm
Rendered fromvignette1.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2019-08-23
Analysing sparse ecological percent cover data using gllvm
Rendered fromvignette8.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2024-11-26
Correlation structures for latent variables and row effects
Rendered fromvignette9.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2024-11-26
How to use the quadratic response model
Rendered fromvignette5.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2022-12-17
Introduction to gllvm Part 1: Ordination
Rendered fromvignette3.rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2022-12-17
Introduction to gllvm Part 2: Species correlations
Rendered fromvignette4.rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2022-12-17
Ordination with predictors
Rendered fromvignette6.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2022-12-17
Phylogenetic random effects
Rendered fromvignette7.Rmd
usingknitr::rmarkdown
on Nov 27 2024.Last update: 2024-11-26
Started: 2024-11-26