Package: genieclust 1.1.6
genieclust: Fast and Robust Hierarchical Clustering with Noise Points Detection
A retake on the Genie algorithm (Gagolewski, 2021 <doi:10.1016/j.softx.2021.100722>) - a robust hierarchical clustering method (Gagolewski, Bartoszuk, Cena, 2016 <doi:10.1016/j.ins.2016.05.003>). Now faster and more memory efficient; determining the whole hierarchy for datasets of 10M points in low dimensional Euclidean spaces or 100K points in high-dimensional ones takes only 1-2 minutes. Allows clustering with respect to mutual reachability distances so that it can act as a noise point detector or a robustified version of 'HDBSCAN*' (that is able to detect a predefined number of clusters and hence it does not dependent on the somewhat fragile 'eps' parameter). The package also features an implementation of inequality indices (the Gini, Bonferroni index), external cluster validity measures (e.g., the normalised clustering accuracy and partition similarity scores such as the adjusted Rand, Fowlkes-Mallows, adjusted mutual information, and the pair sets index), and internal cluster validity indices (e.g., the Calinski-Harabasz, Davies-Bouldin, Ball-Hall, Silhouette, and generalised Dunn indices). See also the 'Python' version of 'genieclust' available on 'PyPI', which supports sparse data, more metrics, and even larger datasets.
Authors:
genieclust_1.1.6.tar.gz
genieclust_1.1.6.tar.gz(r-4.5-noble)genieclust_1.1.6.tar.gz(r-4.4-noble)
genieclust.pdf |genieclust.html✨
genieclust/json (API)
NEWS
# Install 'genieclust' in R: |
install.packages('genieclust', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gagolews/genieclust/issues
Last updated 3 months agofrom:2251e8cb05. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-linux-x86_64 | OK | Nov 21 2024 |
Exports:adjusted_fm_scoreadjusted_mi_scoreadjusted_rand_scorebonferroni_indexcalinski_harabasz_indexdevergottini_indexdunnowa_indexemst_mlpackfm_scoregclustgeneralised_dunn_indexgeniegini_indexmi_scoremstnegated_ball_hall_indexnegated_davies_bouldin_indexnegated_wcss_indexnormalized_clustering_accuracynormalized_confusion_matrixnormalized_mi_scorenormalized_pivoted_accuracynormalizing_permutationpair_sets_indexrand_scoresilhouette_indexsilhouette_w_indexwcnn_index
Dependencies:Rcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Internal Cluster Validity Measures | calinski_harabasz_index cluster_validity dunnowa_index generalised_dunn_index negated_ball_hall_index negated_davies_bouldin_index negated_wcss_index silhouette_index silhouette_w_index wcnn_index |
External Cluster Validity Measures and Pairwise Partition Similarity Scores | adjusted_fm_score adjusted_mi_score adjusted_rand_score compare_partitions fm_score mi_score normalized_clustering_accuracy normalized_confusion_matrix normalized_mi_score normalized_pivoted_accuracy normalizing_permutation pair_sets_index rand_score |
Euclidean Minimum Spanning Tree | emst_mlpack |
Hierarchical Clustering Algorithm Genie | gclust gclust.default gclust.dist gclust.mst genie genie.default genie.dist genie.mst |
Inequality Measures | bonferroni_index devergottini_index gini_index inequality |
Minimum Spanning Tree of the Pairwise Distance Graph | mst mst.default mst.dist |